qcd and statistical physics
play

QCD and statistical physics Stphane Munier CPHT, cole - PowerPoint PPT Presentation

QCD and statistical physics Stphane Munier CPHT, cole Polytechnique, CNRS Palaiseau, France Florence, February 1 High energy QCD hadron 1 hadron 2 b = impact parameter (proton, nucleus, photon...) Y = relative rapidity r : transverse


  1. QCD and statistical physics Stéphane Munier CPHT, École Polytechnique, CNRS Palaiseau, France Florence, February 1

  2. High energy QCD hadron 1 hadron 2 b = impact parameter (proton, nucleus, photon...) Y = relative rapidity r : transverse size of the projectile r 0 : transverse size of the target  k : transverse energy scale of the projectile   k 0 : transverse energy scale of the target  k k A  Y ,r = ∫ d 2 b A  b ,Y ,r = elastic amplitude k A  b ,Y ,r = fixed impact parameter amplitude ≤ 1 (High) energy dependence of QCD amplitudes?

  3. The Balitsky equation Balitsky (1996) Rapidity evolution of the scattering amplitude: = s N c T = 1 Tr  U U  , 〈 T 〉= A BFKL kernel; acts on transverse coordinates  N c Infinite hierarchy, more ∂  Y A =∗ A −〈 T T 〉 complex operators at each step ∂  Y 〈 T T 〉=∗〈 T T 〉−〈 T T T 〉 2 ∗〈 Tr  U U U U U U 〉  source terms  A ''mean field'' approximation gives the Balitsky-Kovchegov (simpler) equation: 〈 T T 〉=〈 T 〉〈 T 〉= A ⋅ A ⇒ ∂  Y A =∗ A − A ⋅ A  Balitsky (1996); Kovchegov (1999) Understand and solve the full high energy evolution equations! See also JIMWLK and further developments Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner

  4. High energy QCD in the field-theory formulation Balitsky (1996) Inside the Balitsky equation: + ... Effective formulation: "Pomeron" diagrams Pomeron = = + + + + ... A ∂  Y A =∗ A ?

  5. Alternative philosophy Breakthrough by Mueller and Shoshi, 3 years ago: "Small x physics beyond the Kovchegov equation" This talk: Subsequent interpretation of their calculation in the light of some models well-known in statistical mechanics (namely reaction-diffusion processes ). go beyond the Mueller-Shoshi results simple picture, based on the parton model connects the QCD problem to more general physics and mathematics Instead of a direct approach, identify the universality class from the physics of the parton model, then apply general results!

  6. Outline High energy QCD and reaction-diffusion Field theory versus statistical methods for a simple particle model Statistical methods and application to QCD

  7. How a high rapidity hadron looks observer r 0 Y 0 = 0 Y 1  Y 0 rapidity in the frame of the observer

  8. How a high rapidity hadron looks k ' ~ k k 1  Y ~ 1  k ? n ≤ N Parton saturation: 1 2 n  k  T  k ~ s N k Number of partons n unitarity: T  r ≤ 1 ⇒ N = 1 2  Y  lnQ s 2  s 1 2 lnk 2 2  n − n N   n  ∂   Y n =−∂ lnk 2 BFKL ~ ∂ lnk n  n Noise term due to discreteness 2

  9. How a high rapidity hadron looks k ' ~ k k 1  Y ~ 1  k ? n ≤ N Parton saturation: 1 2 n  k  T  k ~ s 1 k unitarity: T  r ≤ 1 ⇒ N = 1 1-Fock state amplitude T 2  Y  lnQ s 2  s A =〈 T 〉 Physical amplitude: 2  s 2 lnk 2  s  T  ∂   Y T =−∂ lnk 2  T − T 2 BFKL ~ ∂ lnk T  T Noise term due to discreteness 2

  10. How a high rapidity hadron looks k ' ~ k k 1  t ~  Y ~ 1 k ? n ≤ N Parton saturation: 1 2 n  k  T  k ~ s 1 k unitarity: T  r ≤ 1 ⇒ N = 1 1-Fock state amplitude T 2  Y ~ X t lnQ s 2  s A =〈 T 〉 Physical amplitude: 2  s 2 ~ x lnk 2   T ∂ t T =−∂ x  T − T N  2 T  T branching diffusion ~ ∂ x Noise term due to discreteness

  11. Reaction-diffusion t t  t proba  t proba  t n  x ,t  N proba p x proba p proba  1 − t − t n  t  N − 2p  n  x ,t  n  x ,t  t  T = n N N N 1 x x 2  x,t  t  T T  x,t  t = T  x ,t  p  T  x  x ,t  T  x − x,t − 2T  x ,t  t T  x ,t − t T N  x,t  t    T 2 ∂ t T = −∂ x  T − T N  2   2 2 T  T − T ∂ t T =∂ x N T  1 − T  Prototype equation: sFKPP equation Fisher; Kolmogorov, Petrovsky, Piscunov (1937)

  12. Dictionary Reaction-diffusion High energy QCD 2 / k 0 2  ln  k Position x  Y  Time t Particle density T Partonic amplitude T 1 Maximum/equilibrium 2  s number of particles N 2 / k 0 2  ln  Q s Position of the wave front X Saturation scale sFKPP equation QCD evolution in the parton model 2   2 2  s  T  ∂   Y T =−∂ lnk 2  T − T 2 T  T − T ∂ t T =∂ x N T  1 − T 

  13. Outline High energy QCD and reaction-diffusion Field theory versus statistical methods for a simple particle model Statistical methods and application to QCD

  14. Simple particle model t  t t t t  t k particles added: k particles split, n-k do not split proba  t proba  1 − t  n  t  n  t  t = n  t  k  t  t  proba P n  k =  k   t  n k  1 − t  n − k = k −〈 k 〉 1 〈 k 〉= n  t define 〈〉= 0   t   2 〉= 1 〈 2 =〈 k −〈 k 〉 2 〉= n  t  k t  1 such that ∑ t  t ~± 1 〈 k 〉 dn dt = n   n  n  t  t = n  t  t  n  t   n  t  t  t    t  0 n What is, in average , the number of particles at time t? d 〈 n 〉 〈 n  t 〉 obtained by solving the trivial equation dt =〈 n 〉 4 t e 1 t 1 2 3

  15. Simple particle model t  t t t t  t k 2 k 1 particles added, particles removed proba  t proba  t n  t  N proba  1 − t − t n  t  N  n  t  t = n  t  k 1  t  t − k 2  t  t  n  t  proba P n  k 1, k 2 =  k 1 k 2   t  k 1   t n  t  N   1 − t − t n  t  N  k 2 n − k 1 − k 2 n N   n  1  n N   2 〈〉= 0 dn dt = n − n 2 〉= 1 〈 dt n  t  〈 n  t 〉 is not obtained by solving a trivial equation! N d 〈 n 〉 dt =〈 n 〉− 1 2 〉 N 〈 n 2 〉 d 〈 n ...infinite hierarchy! = dt similar to the Balitsky equation in 0D 2 d 〈 n 〉 dt =〈 n 〉−〈 n 〉 4 Mean field approximation: N 1 similar to the Balitsky-Kovchegov equation t 1 2 3

  16. Field-theoretical formulation Doi (1975) Mueller (1995) Statistical formulation: Shoshi, Xiao (2005) Evolution of Poissonian states evolution of fixed particle number states n P z  n = z − z n! e n  t  n  t  z  t  exp  − ∫ dt [ z  N  zzz  zzzz  ]  dt − 1  z − zzz  1 d 〈 n  t 〉=〈 z  t 〉 Path integral average, with weight + + + + ... 〈 n  t 〉= 6 − 24 − 2 3t 4t + ... t 2 e 3 e e 2t N e N N 〈 n  t 〉= N  1 − Ne − Nexp − t  b  ∞ db − t ∫ 1  b e After Borel resummation: 0

  17. Statistical method proba  t N   n  1  n N   2 dn dt = n − n proba  t n  t  proba  1 − t − t n  t  N N  n N = 5000 t

  18. Statistical method proba  t N   n  1  n N   2 dn dt = n − n proba  t n  t  proba  1 − t − t n  t  N N  n N = 5000 2 dn dt = n − n N ? t

  19. Statistical method proba  t N   n  1  n N   2 dn dt = n − n proba  t n  t  proba  1 − t − t n  t  N N  n N = 5000 2 dn dt = n − n N ? dn dt = n   n 

  20. Statistical method proba  t N   n  1  n N   2 dn dt = n − n proba  t n  t  proba  1 − t − t n  t  N N  n N = 5000 2 dn dt = n − n N 〈 n 〉 2 mean field solution d 〈 n 〉 dt =〈 n 〉−〈 n 〉 N 1 ≪ n ≪ N t dn dt = n   n  t

  21. Statistical method proba  t N   n  1  n N   2 dn dt = n − n proba  t n  t  proba  1 − t − t n  t  N N  n N = 5000 2 dn dt = n − n N 1 ≪ n ≪ N t dn dt = n   n  t 2 dn dt = n − n Solution of the mean-field equation N dn dt = n   n  Solution of for t n  t = n with the initial condition Field-theoretical result: ⇔ N ∞ 〈 n  t 〉= ∫ − t − nexp − t  dt ne 〈 n  t 〉= N  1 − Ne − Nexp − t  b  ∞ db 1  N 0 − t ∫ 1  b e − t − t  n e 0 + Well-established systematics + Simple, intuitive _ _ Complex, abstract No systematics

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend