soft gluon resummation for associated t th production at
play

Soft Gluon Resummation for associated t tH Production at the LHC - PowerPoint PPT Presentation

Motivation Threshold Resummation Application for 2 3 Hard matching coefficient Numerical Results Soft Gluon Resummation for associated t tH Production at the LHC Vincent Theeuwes University at Buffalo The State University of New York


  1. Motivation Threshold Resummation Application for 2 → 3 Hard matching coefficient Numerical Results Soft Gluon Resummation for associated t ¯ tH Production at the LHC Vincent Theeuwes University at Buffalo The State University of New York In Collaboration with: Anna Kulesza, Leszek Motyka, Tomasz Stebel arXiv:1509.02780 and in preperation Loopfest, 08-15-2016 Threshold resummation for t ¯ 1 V. Theeuwes tH

  2. Motivation Threshold Resummation Application for 2 → 3 Hard matching coefficient Numerical Results Importance of pp → t ¯ tH • A Higgs boson with a mass close to 125 GeV • Precision study needed to determine if it is SM Higgs • t ¯ tH direct way to access Yukawa coupling LHC HIGGS XS WG 2016 H+X) [pb] 2 10 M(H)= 125 GeV W ) E L O + N C D Q N L L + N L O N N → H ( p p 10 → qqH (NNLO QCD + NLO EW) (pp → pp W ) O E N L C D + O Q N N L σ → H ( 1 W W ) p p O E + N L bbH (NNLO QCD in 5FS, NLO QCD in 4FS) C D O Q N N L → Z H ( p p → pp W ) E L O N + D C Q − O 1 L ( N 10 H → t t p p tH (NLO QCD) → pp − 2 10 6 7 8 9 10 11 12 13 14 15 s [TeV] [LHCHXSWG] Threshold resummation for t ¯ 2 V. Theeuwes tH

  3. Motivation Threshold Resummation Application for 2 → 3 Hard matching coefficient Numerical Results Current status of pp → t ¯ tH • QCD Corrections up to NLO [Beenakker et al. , ’02] [Dawson et al. , ’02] • Matched to parton showers by: aMC@NLO [Frederix et al. , ’11] , PowHel [Garzelli et al. , ’11] , Sherpa [Hoeche et al., ’12] , POWHEG-BOX [Hartanto et al. , ’14] • Electroweak correction [Frixione et al. , ’14,’15][Zhang, ’14] • Including top decays [Denner, Feger, ’15] • Absolute threshold at NLL [Kulesza, Motyka, Stebel, VT, ’15] • Expansion of NNLL in SCET [Broggio et al., ’15] ✞ ✟ ✒ ✒ ❴ s ✭ � � ✺ ✥ ✥ ❍ ✁ ✂ ✄ ▼ ❢ ☎ ◆ ✞ ✑ ✒ ✒ ❘ ✆ ✝ ✞ ✟ ✠ ✡☛ ✎ ✝ ✞ ✑ ✒ ✓ ✡☛ ✏ ✌ ✍ ♠ ✝ ✔ ✕ ✎ ✴ ✑ ✞ ✒ ✒ ✒ ✵ t ✏ ✽ ✒ ✒ ☞✌ ✍ ✻ ✒ ✒ ✟ ✒ ✒ ✑ ✒ ✒ ✒ ✖ ✑ ✒ ✖ ✗ ✞ ✑ ✗ ♠ ✴ ♠ ✵ [Beenakker et al. , ’02] Threshold resummation for t ¯ 3 V. Theeuwes tH

  4. Motivation Threshold Resummation Application for 2 → 3 Hard matching coefficient Numerical Results Why resummation for t ¯ tH ? Gains • NNLO corrections out of reach • Resummation can help reduce scale uncertainty • Good process to start: • Simple color structure • Massive particles → no final state collinear divergences Threshold resummation for t ¯ 4 V. Theeuwes tH

  5. Motivation Threshold Resummation Application for 2 → 3 Hard matching coefficient Numerical Results Why resummation for t ¯ tH ? Gains • NNLO corrections out of reach • Resummation can help reduce scale uncertainty • Good process to start: • Simple color structure • Massive particles → no final state collinear divergences Pitfalls • 2 → 3 phase space supressed near threshold ( σ ∝ β 4 ) • Small corrections from near absolute threshold Threshold resummation for t ¯ 4 V. Theeuwes tH

  6. Motivation Threshold Resummation Application for 2 → 3 Hard matching coefficient Numerical Results Definition of Threshold Q-approach M-approach (absolute threshold) τ Q = Q 2 τ M = M 2 Threshold variable ˆ Threshold variable ˆ s ˆ s ˆ Q 2 : the invariant mass final state particles M : the sum of final state masses τ M = 1 − M 2 τ Q = 1 − Q 2 1 − ˆ 1 − ˆ s ˆ s ˆ ∼ maximum energy of the emitted gluons ∼ energy of the emitted gluons total available energy total available energy √ ˆ s : the partonic center of mass energy Threshold resummation for t ¯ 5 V. Theeuwes tH

  7. Motivation Threshold Resummation Application for 2 → 3 Hard matching coefficient Numerical Results Logarithms Q-approach The IR divergences lead to logarithms: � � � log(1 − ˆ � τ Q ) − 1 − 2 ǫ = − 1 1 τ Q ) (1 − ˆ 2 ǫδ (1 − ˆ τ Q ) + − 2 ǫ 1 − ˆ τ Q 1 − ˆ τ Q ✎ ☞ + + � log m (1 − ˆ τ Q ) � α n ✍ ✌ s 1 − ˆ τ Q + In general logarithms of 1 − ˆ τ Q M-approach ✞ ☎ After integration over ˆ τ Q : logarithms of 1 − ˆ τ M : ✝ ✆ α n s log m (1 − ˆ τ M ) Logarithms become large in threshold limit: ˆ τ → 1 Threshold resummation for t ¯ 6 V. Theeuwes tH

  8. Motivation Threshold Resummation Application for 2 → 3 Hard matching coefficient Numerical Results Mellin Transform Mellin transform is used with respect to τ (needed for factorization of ✤ ✜ phase space): � 1 dτ τ N − 1 σ pp → t ¯ ˜ σ pp → t ¯ tH ( N ) ≡ tH ( τ, µ R , µ F ) 0 f i/p ( N + 1 , µ F ) ˜ ˜ f j/p ( N + 1 , µ F )˜ � = ˆ σ ij → t ¯ tH ( N, µ R , µ F ) ✣ ✢ i,j • ˜ f i/p ( N + 1 , µ F ) : Mellin transform with respect to x • ˜ ˆ σ ij → t ¯ tH ( N, µ R , µ F ) : Mellin transform with respect to ˆ τ τ ) ⇒ log n N and threshold ˆ log n (1 − ˆ τ → 1 ∼ N → ∞ First application for 2 → 3 in Mellin space Threshold resummation for t ¯ 7 V. Theeuwes tH

  9. Motivation Threshold Resummation Application for 2 → 3 Hard matching coefficient Numerical Results General factorization In general cross section factorizes into: σ ij → kl... = H ij → kl... ,IJ ⊗ ψ i ⊗ ψ j ⊗ S JI ⊗ J k ⊗ J l . . . ˆ • H ij → kl,IJ Hard function ψ i • ψ i,j Initial state collinear emission J k • J k,l,... Final state collinear H ∗ H S emission J l • S JI Soft emission ψ j Each of these functions is computed through renormalization group equations Threshold resummation for t ¯ 8 V. Theeuwes tH

  10. Motivation Threshold Resummation Application for 2 → 3 Hard matching coefficient Numerical Results Differential formalism General formalism developed for 2 → 2 . [Kidonakis,Oderda,Sterman’98] , [Laenen,Oderda,Sterman’98] Using a infra-red safe weight ( ω ) to describe the soft limit of the emission. For 2 → 2 : • Pair invariant mass ω PIM = z = 1 − Q 2 / ˆ s • One particle inclusive ω 1PI = s 4 = (( p 1 + p 2 − p 3 ) 2 − m 2 4 ) / ˆ s Threshold resummation for t ¯ 9 V. Theeuwes tH

  11. Motivation Threshold Resummation Application for 2 → 3 Hard matching coefficient Numerical Results Resummation for differential distributions ✞ ☎ ✝ ✆ W = ω 1 c 1 + ω 2 c 2 + ω s + ω k + ω l + . . . � dWe − NW dσ ij → kl... d ˆ Π n � � � dWe − NW H IJ � ˆ = Π n dω 1 dω 2 dω s dω k dω l . . . δ ( W − ω 1 c 1 − ω 2 c 2 − ω s − ω k − ω l − . . . ) ψ i/i ( ω 1 ) ψ j/j ( ω 2 ) S JI ( ω s ) J k ( ω k ) J l ( ω l ) . . . � � ˆ ψ i/i ( Nc 1 ) ˜ ˜ ψ j/j ( Nc 2 ) ˜ S JI ( N ) ˜ J k ( N ) ˜ = H IJ Π n J l ( N ) . . . • ω 1 / 2 Initial state collinear weights • ω s Soft-wide angle weight • ω k/l... Final state collinear weights Threshold resummation for t ¯ 10 V. Theeuwes tH

  12. Motivation Threshold Resummation Application for 2 → 3 Hard matching coefficient Numerical Results 2 → 3 weights for differential notation pp → Q ¯ ⇒ Q 2 QB + X z 5 = ˆ s − s 345 ˆ s Threshold resummation for t ¯ 11 V. Theeuwes tH

  13. Motivation Threshold Resummation Application for 2 → 3 Hard matching coefficient Numerical Results 2 → 3 weights for differential notation pp → Q ¯ ⇒ Q 2 QB + X z 5 = ˆ s − s 345 ˆ s pp → B + X [ Q ¯ Q ] ⇒ P T, 5 , y 5 v 5 = ( p 1 + p 2 − p 5 ) 2 − s 34 s + ˜ t 15 + ˜ t 25 + m 2 = ˆ 5 − s 34 s ˆ ˆ s Threshold resummation for t ¯ 11 V. Theeuwes tH

  14. Motivation Threshold Resummation Application for 2 → 3 Hard matching coefficient Numerical Results 2 → 3 weights for differential notation pp → Q ¯ ⇒ Q 2 QB + X z 5 = ˆ s − s 345 ˆ s pp → B + X [ Q ¯ Q ] ⇒ P T, 5 , y 5 v 5 = ( p 1 + p 2 − p 5 ) 2 − s 34 s + ˜ t 15 + ˜ t 25 + m 2 = ˆ 5 − s 34 s ˆ ˆ s pp → Q ¯ ⇒ P T, 34 , y 34 , Q 2 Q + X [ B ] 34 s 5 = ( p 1 + p 2 − p 3 − p 4 ) 2 − m 2 s + ˜ t 13 + ˜ t 14 + ˜ t 23 + ˜ t 24 + s 34 − m 2 = ˆ 5 5 s ˆ ˆ s Threshold resummation for t ¯ 11 V. Theeuwes tH

  15. Motivation Threshold Resummation Application for 2 → 3 Hard matching coefficient Numerical Results Orders of Resummation Large logarithms log N ≡ L for N → ∞ Perturbation needs to be reordered in α s and L : ✞ ☎ ✝ ✆ σ ∼ ˜ ˜ σ LO × C ( α s ) exp [ Lg 1 ( α s L ) + g 2 ( α s L ) + α s g 3 ( α s L ) + · · · ] ⇓ ⇓ ⇓ With orders of precision: LL NLL NNLL ⇓ ⇓ ⇓ α n s log n +1 ( N ) α n s log n ( N ) α n +1 log n ( N ) s Exponential functions are universal for initial state emission [Kodaira, Trentadue, ’82][Sterman, ’87][Catani, d’Emilio, Trentadue, ’88][Catani, Trentadue, ’89] Threshold resummation for t ¯ 12 V. Theeuwes tH

  16. Motivation Threshold Resummation Application for 2 → 3 Hard matching coefficient Numerical Results Color space Need to project the matrix element onto a color basis. Use the s-channel color basis: gg q ¯ q δ A 1 A 2 δ a 3 a 4 1 : 1 : δ a 2 a 1 δ a 3 a 4 T D a 3 a 4 d DA 1 A 2 8 S : T D a 2 a 1 T D 8 : a 3 a 4 iT D a 3 a 4 f DA 1 A 2 8 A : Basis for diagonalization of soft anomalous dimension in absolute threshold limit. Same as for t ¯ t production Threshold resummation for t ¯ 13 V. Theeuwes tH

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend