soft gluon contributions to drell yan and higgs
play

Soft gluon contributions to Drell-Yan and Higgs productions beyond - PowerPoint PPT Presentation

Soft gluon contributions to Drell-Yan and Higgs productions beyond NNLO V. Ravindran Harish-Chandra Research Institute, Allahabad Introduction Scale ambiguity Sudakov Resummation of soft gluons at N 3 LO Drell-Yan and Higgs


  1. Soft part of NNLO Catani et al, Harlander and Kilgore Z 1 τ = m 2 dx σ ab “ τ ” 2 S dσ P 1 P 2 ( τ, m h ) = X h x Φ ab ( x ) 2ˆ s d ˆ x, m h S τ ab • Φ ab ( x ) becomes large when LHC ( S = (14 TeV)^2) x → x min = τ 1e+07 qqb gg (0.01) qg 1e+06 • Dominant contribution to Higgs production comes from the region when x → τ 100000 φ ab 10000 • It is sufficient if we know the partonic cross section when x → τ 1000 100 • x → τ is called soft limit . 10 0 0.001 0.002 0.003 0.004 0.005 0.006 x = Q 2 /S Gluon flux is largest at LHC - p. 5/24

  2. Soft part of NNLO Catani et al, Harlander and Kilgore Z 1 τ = m 2 dx σ ab “ τ ” 2 S dσ P 1 P 2 ( τ, m h ) = X h x Φ ab ( x ) 2ˆ s d ˆ x, m h S τ ab • Φ ab ( x ) becomes large when LHC ( S = (14 TeV)^2) x → x min = τ 1e+07 qqb gg (0.01) qg 1e+06 • Dominant contribution to Higgs production comes from the region when x → τ 100000 φ ab 10000 • It is sufficient if we know the partonic cross section when x → τ 1000 100 • x → τ is called soft limit . 10 0 0.001 0.002 0.003 0.004 0.005 0.006 x = Q 2 /S • Expand the partonic cross section around x = τ . Gluon flux is largest at LHC - p. 5/24

  3. Soft part Catani et al, Harlander and Kilgore - p. 6/24

  4. Soft part Catani et al, Harlander and Kilgore • Expand the partonic cross section around x = τ or z = x τ = 1 . - p. 6/24

  5. Soft part Catani et al, Harlander and Kilgore • Expand the partonic cross section around x = τ or z = x τ = 1 . ∞ z = x X σ ( z ) = C (0) ( z ) + (1 − z ) i C ( i ) d ˆ τ i =1 - p. 6/24

  6. Soft part Catani et al, Harlander and Kilgore • Expand the partonic cross section around x = τ or z = x τ = 1 . ∞ z = x X σ ( z ) = C (0) ( z ) + (1 − z ) i C ( i ) d ˆ τ i =1 • C (0) : ∞ ! log k (1 − z ) C (0) = C (0) C ( k ) X δ (1 − z ) + 0 0 (1 − z ) k =0 + - p. 6/24

  7. Soft part Catani et al, Harlander and Kilgore • Expand the partonic cross section around x = τ or z = x τ = 1 . ∞ z = x X σ ( z ) = C (0) ( z ) + (1 − z ) i C ( i ) d ˆ τ i =1 • C (0) : ∞ ! log k (1 − z ) C (0) = C (0) C ( k ) X δ (1 − z ) + 0 0 (1 − z ) k =0 + • C ( i ) will be pure constants such as ζ (2) , ζ (3) . 0 - p. 6/24

  8. Soft part Catani et al, Harlander and Kilgore • Expand the partonic cross section around x = τ or z = x τ = 1 . ∞ z = x X σ ( z ) = C (0) ( z ) + (1 − z ) i C ( i ) d ˆ τ i =1 • C (0) : ∞ ! log k (1 − z ) C (0) = C (0) C ( k ) X δ (1 − z ) + 0 0 (1 − z ) k =0 + • C ( i ) will be pure constants such as ζ (2) , ζ (3) . 0 • Compute the entire cross section in the "soft limit". - p. 6/24

  9. Soft part Catani et al, Harlander and Kilgore • Expand the partonic cross section around x = τ or z = x τ = 1 . ∞ z = x X σ ( z ) = C (0) ( z ) + (1 − z ) i C ( i ) d ˆ τ i =1 • C (0) : ∞ ! log k (1 − z ) C (0) = C (0) C ( k ) X δ (1 − z ) + 0 0 (1 − z ) k =0 + • C ( i ) will be pure constants such as ζ (2) , ζ (3) . 0 • Compute the entire cross section in the "soft limit". OR Extract from "Form factors and DGLAP kernels" using 1) Factorisation theorem 2) Renormalisation Group Invariance 3) Drell-Yan NNLO results - p. 6/24

  10. Soft plus Virtual at N 3 LO and beyond VR - p. 7/24

  11. Soft plus Virtual at N 3 LO and beyond VR Using "factorisation" of Virtual, Soft and Collinear: !˛ ˛ ∆ sv I,P ( z, q 2 , µ 2 R , µ 2 Ψ I P ( z, q 2 , µ 2 R , µ 2 F ) = C exp F , ε ) I = q, g n = 4 + ε ˛ ˛ ˛ ε =0 - p. 7/24

  12. Soft plus Virtual at N 3 LO and beyond VR Using "factorisation" of Virtual, Soft and Collinear: !˛ ˛ ∆ sv I,P ( z, q 2 , µ 2 R , µ 2 Ψ I P ( z, q 2 , µ 2 R , µ 2 F ) = C exp F , ε ) I = q, g n = 4 + ε ˛ ˛ ˛ ε =0 ! ” 2 “ Z I (ˆ ˛ 2 Ψ I P ( z, q 2 , µ 2 R , µ 2 a s , µ 2 R , µ 2 , ε ) ˛ ˆ F I (ˆ a s , Q 2 , µ 2 , ε ) ˛ ˛ F , ε ) = ln + ln δ (1 − z ) +2 Φ I a s , q 2 , µ 2 , z, ε ) − 2 m C ln Γ II (ˆ a s , µ 2 , µ 2 P (ˆ F , z, ε ) - p. 7/24

  13. Soft plus Virtual at N 3 LO and beyond VR Using "factorisation" of Virtual, Soft and Collinear: !˛ ˛ ∆ sv I,P ( z, q 2 , µ 2 R , µ 2 Ψ I P ( z, q 2 , µ 2 R , µ 2 F ) = C exp F , ε ) I = q, g n = 4 + ε ˛ ˛ ˛ ε =0 ! ” 2 “ Z I (ˆ ˛ 2 Ψ I P ( z, q 2 , µ 2 R , µ 2 a s , µ 2 R , µ 2 , ε ) ˛ ˆ F I (ˆ a s , Q 2 , µ 2 , ε ) ˛ ˛ F , ε ) = ln + ln δ (1 − z ) +2 Φ I a s , q 2 , µ 2 , z, ε ) − 2 m C ln Γ II (ˆ a s , µ 2 , µ 2 P (ˆ F , z, ε ) • Z I (ˆ a s , µ 2 R , µ 2 , ε ) is operator renormalisation constant with µ is mass parameter in n = 4 + ε dimensional regularisation → N 3 LO a s , Q 2 , µ 2 , ε ) is the Form factor with Q 2 = − q 2 → N 3 LO ˆ F I (ˆ • • Φ I a s , q 2 , µ 2 , z, ε ) is the soft distribution function → NNLO level P (ˆ a s , µ 2 , µ 2 F , z, ε ) is mass factorisation kernel → N 3 LO • Γ II (ˆ - p. 7/24

  14. Soft plus Virtual at N 3 LO and beyond VR Using "factorisation" of Virtual, Soft and Collinear: !˛ ˛ ∆ sv I,P ( z, q 2 , µ 2 R , µ 2 Ψ I P ( z, q 2 , µ 2 R , µ 2 F ) = C exp F , ε ) I = q, g n = 4 + ε ˛ ˛ ˛ ε =0 ! ” 2 “ Z I (ˆ ˛ 2 Ψ I P ( z, q 2 , µ 2 R , µ 2 a s , µ 2 R , µ 2 , ε ) ˛ ˆ F I (ˆ a s , Q 2 , µ 2 , ε ) ˛ ˛ F , ε ) = ln + ln δ (1 − z ) +2 Φ I a s , q 2 , µ 2 , z, ε ) − 2 m C ln Γ II (ˆ a s , µ 2 , µ 2 P (ˆ F , z, ε ) • Z I (ˆ a s , µ 2 R , µ 2 , ε ) is operator renormalisation constant with µ is mass parameter in n = 4 + ε dimensional regularisation → N 3 LO a s , Q 2 , µ 2 , ε ) is the Form factor with Q 2 = − q 2 → N 3 LO ˆ F I (ˆ • • Φ I a s , q 2 , µ 2 , z, ε ) is the soft distribution function → NNLO level P (ˆ a s , µ 2 , µ 2 F , z, ε ) is mass factorisation kernel → N 3 LO • Γ II (ˆ g 2 ˆ m = 1 s ˆ a s = for DIS , m = 1 for DY , Higgs 16 π 2 2 - p. 7/24

  15. Sudakov Resummation for Form factors Vogt,Vermaseren,Moch,VR - p. 8/24

  16. Sudakov Resummation for Form factors Vogt,Vermaseren,Moch,VR " ! ! # a s , µ 2 , µ 2 a s , Q 2 d 1 dQ 2 ln ˆ Q 2 a s , Q 2 , µ 2 , ε K I R + G I R F I ` ´ ˆ = ˆ µ 2 , ε ˆ µ 2 , ε µ 2 2 R « i ε ∞ „ Q 2 2 L I, ( i ) ln ˆ F I (ˆ a s , Q 2 , µ 2 , ε ) = X a i S i ε ˆ Solution : ˆ ( ε ) s F µ 2 i =1 - p. 8/24

  17. Sudakov Resummation for Form factors Vogt,Vermaseren,Moch,VR " ! ! # a s , µ 2 , µ 2 a s , Q 2 d 1 dQ 2 ln ˆ Q 2 a s , Q 2 , µ 2 , ε K I R + G I R F I ` ´ ˆ = ˆ µ 2 , ε ˆ µ 2 , ε µ 2 2 R « i ε ∞ „ Q 2 2 L I, ( i ) ln ˆ F I (ˆ a s , Q 2 , µ 2 , ε ) = X a i S i ε ˆ Solution : ˆ ( ε ) s F µ 2 i =1 Formal solution upto 4 loops: ! ! 1 + 1 L I, (1) ˆ − 2 A I G I = 1 ( ε ) 1 F ε 2 ε ! ! 1 + 1 − 1 + 1 L I, (2) ˆ β 0 A I 2 A I 2 − β 0 G I 2 εG I = 1 ( ε ) 2 ( ε ) 1 F ε 3 ε 2 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·· - p. 8/24

  18. Sudakov Resummation for Form factors Vogt,Vermaseren,Moch,VR " ! ! # a s , µ 2 , µ 2 a s , Q 2 d 1 dQ 2 ln ˆ Q 2 a s , Q 2 , µ 2 , ε K I R + G I R F I ` ´ ˆ = ˆ µ 2 , ε ˆ µ 2 , ε µ 2 2 R « i ε ∞ „ Q 2 2 L I, ( i ) ln ˆ F I (ˆ a s , Q 2 , µ 2 , ε ) = X a i S i ε ˆ Solution : ˆ ( ε ) s F µ 2 i =1 Formal solution upto 4 loops: ! ! 1 + 1 L I, (1) ˆ − 2 A I G I = 1 ( ε ) 1 F ε 2 ε ! ! 1 + 1 − 1 + 1 L I, (2) ˆ β 0 A I 2 A I 2 − β 0 G I 2 εG I = 1 ( ε ) 2 ( ε ) 1 F ε 3 ε 2 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·· i = C A A g A q • A I are maximally non − abelian i = 1 , 2 , 3 . i C F - p. 8/24

  19. Sudakov Resummation for Form factors Vogt,Vermaseren,Moch,VR " ! ! # a s , µ 2 , µ 2 a s , Q 2 d 1 dQ 2 ln ˆ Q 2 a s , Q 2 , µ 2 , ε K I R + G I R F I ` ´ ˆ = ˆ µ 2 , ε ˆ µ 2 , ε µ 2 2 R « i ε ∞ „ Q 2 2 L I, ( i ) ln ˆ F I (ˆ a s , Q 2 , µ 2 , ε ) = X a i S i ε ˆ Solution : ˆ ( ε ) s F µ 2 i =1 Formal solution upto 4 loops: ! ! 1 + 1 L I, (1) ˆ − 2 A I G I = 1 ( ε ) 1 F ε 2 ε ! ! 1 + 1 − 1 + 1 L I, (2) ˆ β 0 A I 2 A I 2 − β 0 G I 2 εG I = 1 ( ε ) 2 ( ε ) 1 F ε 3 ε 2 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·· i = C A A g A q • A I are maximally non − abelian i = 1 , 2 , 3 . i C F • Every order in ˆ a s , all the poles except the lowest one can be predicted from the previous order results using A and β function. - p. 8/24

  20. New observation for single pole in ε VR,Smith,van Neerven - p. 9/24

  21. New observation for single pole in ε VR,Smith,van Neerven F q and ˆ F g in SU ( N ) solves the single pole problem: Two loop results for ˆ - p. 9/24

  22. New observation for single pole in ε VR,Smith,van Neerven F q and ˆ F g in SU ( N ) solves the single pole problem: Two loop results for ˆ G I s have interesting structure: ∞ ε k g I,k G I 2( B I 1 − γ I 1 ) + f I X 1 ( ε ) = 1 + 1 k =1 ∞ 2 − 2 β 0 g I, 1 ε k g I,k X G I 2( B I 2 − γ I 2 ) + f I 2 ( ε ) = + 1 2 k =1 - p. 9/24

  23. New observation for single pole in ε VR,Smith,van Neerven F q and ˆ F g in SU ( N ) solves the single pole problem: Two loop results for ˆ G I s have interesting structure: ∞ ε k g I,k G I 2( B I 1 − γ I 1 ) + f I X 1 ( ε ) = 1 + 1 k =1 ∞ 2 − 2 β 0 g I, 1 ε k g I,k X G I 2( B I 2 − γ I 2 ) + f I 2 ( ε ) = + 1 2 k =1 B I i are δ (1 − z ) part of P II splitting functions. The new constants " f I 1 and f I 2 " satisfy i = C A f g f q i = 1 , 2 i C F - p. 9/24

  24. New observation for single pole in ε VR,Smith,van Neerven F q and ˆ F g in SU ( N ) solves the single pole problem: Two loop results for ˆ G I s have interesting structure: ∞ ε k g I,k G I 2( B I 1 − γ I 1 ) + f I X 1 ( ε ) = 1 + 1 k =1 ∞ 2 − 2 β 0 g I, 1 ε k g I,k X G I 2( B I 2 − γ I 2 ) + f I 2 ( ε ) = + 1 2 k =1 B I i are δ (1 − z ) part of P II splitting functions. The new constants " f I 1 and f I 2 " satisfy i = C A f g f q i = 1 , 2 i C F Even the single pole can be predicted: G I i = 2( B I i − γ I i ) + f I i + · · · - p. 9/24

  25. New observation for single pole in ε VR,Smith,van Neerven F q and ˆ F g in SU ( N ) solves the single pole problem: Two loop results for ˆ G I s have interesting structure: ∞ ε k g I,k G I 2( B I 1 − γ I 1 ) + f I X 1 ( ε ) = 1 + 1 k =1 ∞ 2 − 2 β 0 g I, 1 ε k g I,k X G I 2( B I 2 − γ I 2 ) + f I 2 ( ε ) = + 1 2 k =1 B I i are δ (1 − z ) part of P II splitting functions. The new constants " f I 1 and f I 2 " satisfy i = C A f g f q i = 1 , 2 i C F Even the single pole can be predicted: G I i = 2( B I i − γ I i ) + f I i + · · · Recent three loop result by Moch,Vermaseren, Vogt confirms our prediction: 3 = C A f g f q 3 C F - p. 9/24

  26. New observation for single pole in ε VR,Smith,van Neerven F q and ˆ F g in SU ( N ) solves the single pole problem: Two loop results for ˆ G I s have interesting structure: ∞ ε k g I,k G I 2( B I 1 − γ I 1 ) + f I X 1 ( ε ) = 1 + 1 k =1 ∞ 2 − 2 β 0 g I, 1 ε k g I,k X G I 2( B I 2 − γ I 2 ) + f I 2 ( ε ) = + 1 2 k =1 B I i are δ (1 − z ) part of P II splitting functions. The new constants " f I 1 and f I 2 " satisfy i = C A f g f q i = 1 , 2 i C F Even the single pole can be predicted: G I i = 2( B I i − γ I i ) + f I i + · · · Recent three loop result by Moch,Vermaseren, Vogt confirms our prediction: 3 = C A f g f q 3 C F This completes the understanding of all the poles of the form factors. - p. 9/24

  27. Mass factorisation using DGLAP kernel VR - p. 10/24

  28. Mass factorisation using DGLAP kernel VR Due to the massless partons, collinear singularities appear in • the phase space of the real emission processes • loop integrals of the virtual corrections - p. 10/24

  29. Mass factorisation using DGLAP kernel VR Due to the massless partons, collinear singularities appear in • the phase space of the real emission processes • loop integrals of the virtual corrections They are removed by Mass Factorisation by adding: a s , µ 2 , µ 2 − ln Γ(ˆ F , z, ε ) - p. 10/24

  30. Mass factorisation using DGLAP kernel VR Due to the massless partons, collinear singularities appear in • the phase space of the real emission processes • loop integrals of the virtual corrections They are removed by Mass Factorisation by adding: a s , µ 2 , µ 2 − ln Γ(ˆ F , z, ε ) DGLAP kernels satisfy Renormalisation Group Equations: d F , ε ) = 1 µ 2 Γ( z, µ 2 z, µ 2 z, µ 2 ` ´ ` ´ ⊗ Γ 2 P F , ε . F F dµ 2 F - p. 10/24

  31. Mass factorisation using DGLAP kernel VR Due to the massless partons, collinear singularities appear in • the phase space of the real emission processes • loop integrals of the virtual corrections They are removed by Mass Factorisation by adding: a s , µ 2 , µ 2 − ln Γ(ˆ F , z, ε ) DGLAP kernels satisfy Renormalisation Group Equations: d F , ε ) = 1 µ 2 Γ( z, µ 2 z, µ 2 z, µ 2 ` ´ ` ´ ⊗ Γ 2 P F , ε . F F dµ 2 F The diagonal terms of the splitting functions P ( i ) ( z ) have the following structure " # P ( i ) + P ( i ) B I i +1 δ (1 − z ) + A I i +1 D 0 II ( z ) = 2 reg,II ( z ) , - p. 10/24

  32. Mass factorisation using DGLAP kernel VR Due to the massless partons, collinear singularities appear in • the phase space of the real emission processes • loop integrals of the virtual corrections They are removed by Mass Factorisation by adding: a s , µ 2 , µ 2 − ln Γ(ˆ F , z, ε ) DGLAP kernels satisfy Renormalisation Group Equations: d F , ε ) = 1 µ 2 Γ( z, µ 2 z, µ 2 z, µ 2 ` ´ ` ´ ⊗ Γ 2 P F , ε . F F dµ 2 F The diagonal terms of the splitting functions P ( i ) ( z ) have the following structure " # P ( i ) + P ( i ) B I i +1 δ (1 − z ) + A I i +1 D 0 II ( z ) = 2 reg,II ( z ) , „ 1 « P ( i ) D 0 = , reg,II are regular when z → 1 . 1 − z + We will be left with only maximally non-abelian constants A I i and f I i - p. 10/24

  33. Finiteness of the Cross section VR - p. 11/24

  34. Finiteness of the Cross section VR Observable ∆ I ( α s , Q 2 ) are finite: Infra − red safe - p. 11/24

  35. Finiteness of the Cross section VR Observable ∆ I ( α s , Q 2 ) are finite: Infra − red safe The remaining poles after UV Operator Renormalisation( Z α s and Z I ) and Mass factorisation: 1 i th loop at ε i +1 Highest poles are not removed by renormalisation and factorisation - p. 11/24

  36. Finiteness of the Cross section VR Observable ∆ I ( α s , Q 2 ) are finite: Infra − red safe The remaining poles after UV Operator Renormalisation( Z α s and Z I ) and Mass factorisation: 1 i th loop at ε i +1 Highest poles are not removed by renormalisation and factorisation • The structure of soft part should be "similar" to the Form Factors. • Hence using gauge invariance and RG invariance, we can propose " ! ! # a s , µ 2 , µ 2 a s , q 2 d 1 K I + G I q 2 dq 2 Φ I ` ˆ a s , q 2 , µ 2 , z, ε ´ R R = ˆ µ 2 , z, ε ˆ µ 2 , z, ε µ 2 2 R - p. 11/24

  37. Finiteness of the Cross section VR Observable ∆ I ( α s , Q 2 ) are finite: Infra − red safe The remaining poles after UV Operator Renormalisation( Z α s and Z I ) and Mass factorisation: 1 i th loop at ε i +1 Highest poles are not removed by renormalisation and factorisation • The structure of soft part should be "similar" to the Form Factors. • Hence using gauge invariance and RG invariance, we can propose " ! ! # a s , µ 2 , µ 2 a s , q 2 d 1 K I + G I q 2 dq 2 Φ I ` ˆ a s , q 2 , µ 2 , z, ε ´ R R = ˆ µ 2 , z, ε ˆ µ 2 , z, ε µ 2 2 R RG invariance of Φ I implies: ! ! a s , µ 2 a s , q 2 , µ 2 d d K I G I = − A I ( a s ( µ 2 µ 2 R = − µ 2 R R )) δ (1 − z ) ˆ µ 2 , z, ε ˆ µ 2 , z, ε R R dµ 2 dµ 2 µ 2 R R R - p. 11/24

  38. Solution to (Soft)Sudakov Equation VR - p. 12/24

  39. Solution to (Soft)Sudakov Equation VR Infra-red safeness of the cross section implies I = − A I A - p. 12/24

  40. Solution to (Soft)Sudakov Equation VR Infra-red safeness of the cross section implies I = − A I A Solution to (soft) Sudakov equation: „ q 2 « i ε ∞ 2 Φ I ` a s , q 2 , µ 2 , z, ε X a i S i ε ˆ Φ I, ( i ) ( z, ε ) ´ ˆ = ˆ s µ 2 i =1 - p. 12/24

  41. Solution to (Soft)Sudakov Equation VR Infra-red safeness of the cross section implies I = − A I A Solution to (soft) Sudakov equation: „ q 2 « i ε ∞ 2 Φ I ` a s , q 2 , µ 2 , z, ε X a i S i ε ˆ Φ I, ( i ) ( z, ε ) ´ ˆ = ˆ s µ 2 i =1 where ! A I → − δ (1 − z ) A I , G I ( ε ) → G I ( z, ε ) L I, ( i ) Φ I, ( i ) ( z, ε ) = ˆ ˆ ( ε ) F - p. 12/24

  42. Solution to (Soft)Sudakov Equation VR Infra-red safeness of the cross section implies I = − A I A Solution to (soft) Sudakov equation: „ q 2 « i ε ∞ 2 Φ I ` a s , q 2 , µ 2 , z, ε X a i S i ε ˆ Φ I, ( i ) ( z, ε ) ´ ˆ = ˆ s µ 2 i =1 where ! A I → − δ (1 − z ) A I , G I ( ε ) → G I ( z, ε ) L I, ( i ) Φ I, ( i ) ( z, ε ) = ˆ ˆ ( ε ) F Most general solution: Φ I (ˆ a s , q 2 , µ 2 , z, ε ) Φ I (ˆ a s , q 2 (1 − z ) 2 m , µ 2 , ε ) = „ q 2 (1 − z ) 2 m « i ε ∞ „ i m ε « 2 X a i S i φ I, ( i ) ( ε ) ˆ = ˆ s ε µ 2 2(1 − z ) i =1 - p. 12/24

  43. Solution to (Soft)Sudakov Equation VR Infra-red safeness of the cross section implies I = − A I A Solution to (soft) Sudakov equation: „ q 2 « i ε ∞ 2 Φ I ` a s , q 2 , µ 2 , z, ε X a i S i ε ˆ Φ I, ( i ) ( z, ε ) ´ ˆ = ˆ s µ 2 i =1 where ! A I → − δ (1 − z ) A I , G I ( ε ) → G I ( z, ε ) L I, ( i ) Φ I, ( i ) ( z, ε ) = ˆ ˆ ( ε ) F Most general solution: Φ I (ˆ a s , q 2 , µ 2 , z, ε ) Φ I (ˆ a s , q 2 (1 − z ) 2 m , µ 2 , ε ) = „ q 2 (1 − z ) 2 m « i ε ∞ „ i m ε « 2 X a i S i φ I, ( i ) ( ε ) ˆ = ˆ s ε µ 2 2(1 − z ) i =1 All the poles in ε are predictable. - p. 12/24

  44. Universal Soft part VR - p. 13/24

  45. Universal Soft part VR Single pole in ε : ∞ I I, ( k ) − f I X ε k G G 1 ( ε ) = 1 + 1 k =1 ∞ I I, (1) I, ( k ) X − f I ε k G G 2 − 2 β 0 G 2 ( ε ) = + 1 2 k =1 · · · · · · · · · · · · · · · · · · - p. 13/24

  46. Universal Soft part VR Single pole in ε : ∞ I I, ( k ) − f I X ε k G G 1 ( ε ) = 1 + 1 k =1 ∞ I I, (1) I, ( k ) X − f I ε k G G 2 − 2 β 0 G 2 ( ε ) = + 1 2 k =1 · · · · · · · · · · · · · · · · · · Maximally non-abelian: i ( ε ) = C A g q G G i ( ε ) i = 1 , 2 , 3 C F - p. 13/24

  47. Universal Soft part VR Single pole in ε : ∞ I I, ( k ) − f I X ε k G G 1 ( ε ) = 1 + 1 k =1 ∞ I I, (1) I, ( k ) X − f I ε k G G 2 − 2 β 0 G 2 ( ε ) = + 1 2 k =1 · · · · · · · · · · · · · · · · · · Maximally non-abelian: i ( ε ) = C A g q G G i ( ε ) i = 1 , 2 , 3 C F Soft part of the any cross section are independent of spin,colour,flavour or other quantum numbers. - p. 13/24

  48. Universal Soft part VR Single pole in ε : ∞ I I, ( k ) − f I X ε k G G 1 ( ε ) = 1 + 1 k =1 ∞ I I, (1) I, ( k ) X − f I ε k G G 2 − 2 β 0 G 2 ( ε ) = + 1 2 k =1 · · · · · · · · · · · · · · · · · · Maximally non-abelian: i ( ε ) = C A g q G G i ( ε ) i = 1 , 2 , 3 C F Soft part of the any cross section are independent of spin,colour,flavour or other quantum numbers. a s , q 2 , z, µ 2 , ε ) = C F Φ q (ˆ Φ g (ˆ a s , q 2 , z, µ 2 , ε ) C A - p. 13/24

  49. Higgs productions from Drell-Yan beyond NNLO Universal soft function: VR - p. 14/24

  50. Higgs productions from Drell-Yan beyond NNLO Universal soft function: VR a s , q 2 , z, µ 2 , ε ) = C A Φ g (ˆ Φ q (ˆ a s , q 2 , z, µ 2 , ε ) C F a s , q 2 , z, ε ) , Gluon form factor F g and operator renormalisation • From Drell-Yan Φ q (ˆ constant Z g and DGLAP kernel Γ gg , we can compute soft plus virtual part of σ ( g + g → Higgs ) without explicitly calculating the soft part of Higgs production. - p. 14/24

  51. Higgs productions from Drell-Yan beyond NNLO Universal soft function: VR a s , q 2 , z, µ 2 , ε ) = C A Φ g (ˆ Φ q (ˆ a s , q 2 , z, µ 2 , ε ) C F a s , q 2 , z, ε ) , Gluon form factor F g and operator renormalisation • From Drell-Yan Φ q (ˆ constant Z g and DGLAP kernel Γ gg , we can compute soft plus virtual part of σ ( g + g → Higgs ) without explicitly calculating the soft part of Higgs production. • Our NNLO predictions agrees with the results by Catani et al, Harlander and Kilgore. No need for explicit computation of soft contributions for the Higgs production. - p. 14/24

  52. Higgs productions from Drell-Yan beyond NNLO Universal soft function: VR a s , q 2 , z, µ 2 , ε ) = C A Φ g (ˆ Φ q (ˆ a s , q 2 , z, µ 2 , ε ) C F a s , q 2 , z, ε ) , Gluon form factor F g and operator renormalisation • From Drell-Yan Φ q (ˆ constant Z g and DGLAP kernel Γ gg , we can compute soft plus virtual part of σ ( g + g → Higgs ) without explicitly calculating the soft part of Higgs production. • Our NNLO predictions agrees with the results by Catani et al, Harlander and Kilgore. No need for explicit computation of soft contributions for the Higgs production. • Our N 3 LO predictions (without δ (1 − z ) part) for soft plus virtual contributions to Drell-Yan and Higgs productions agree with the results of Moch and Vogt - p. 14/24

  53. Higgs productions from Drell-Yan beyond NNLO Universal soft function: VR a s , q 2 , z, µ 2 , ε ) = C A Φ g (ˆ Φ q (ˆ a s , q 2 , z, µ 2 , ε ) C F a s , q 2 , z, ε ) , Gluon form factor F g and operator renormalisation • From Drell-Yan Φ q (ˆ constant Z g and DGLAP kernel Γ gg , we can compute soft plus virtual part of σ ( g + g → Higgs ) without explicitly calculating the soft part of Higgs production. • Our NNLO predictions agrees with the results by Catani et al, Harlander and Kilgore. No need for explicit computation of soft contributions for the Higgs production. • Our N 3 LO predictions (without δ (1 − z ) part) for soft plus virtual contributions to Drell-Yan and Higgs productions agree with the results of Moch and Vogt • The scalar form factor F S = < P | ψψ | P > can be predicted at three loop from the known three loop A i , B i , f i and γ m i . - p. 14/24

  54. Higgs productions from Drell-Yan beyond NNLO Universal soft function: VR a s , q 2 , z, µ 2 , ε ) = C A Φ g (ˆ Φ q (ˆ a s , q 2 , z, µ 2 , ε ) C F a s , q 2 , z, ε ) , Gluon form factor F g and operator renormalisation • From Drell-Yan Φ q (ˆ constant Z g and DGLAP kernel Γ gg , we can compute soft plus virtual part of σ ( g + g → Higgs ) without explicitly calculating the soft part of Higgs production. • Our NNLO predictions agrees with the results by Catani et al, Harlander and Kilgore. No need for explicit computation of soft contributions for the Higgs production. • Our N 3 LO predictions (without δ (1 − z ) part) for soft plus virtual contributions to Drell-Yan and Higgs productions agree with the results of Moch and Vogt • The scalar form factor F S = < P | ψψ | P > can be predicted at three loop from the known three loop A i , B i , f i and γ m i . • Soft plus Virtual part Higgs production through bottom quark fusion σ ( b + b → Higgs ) can be predicted upto N 3 LO (without δ (1 − z ) ). - p. 14/24

  55. Higgs productions from Drell-Yan beyond NNLO Universal soft function: VR a s , q 2 , z, µ 2 , ε ) = C A Φ g (ˆ Φ q (ˆ a s , q 2 , z, µ 2 , ε ) C F a s , q 2 , z, ε ) , Gluon form factor F g and operator renormalisation • From Drell-Yan Φ q (ˆ constant Z g and DGLAP kernel Γ gg , we can compute soft plus virtual part of σ ( g + g → Higgs ) without explicitly calculating the soft part of Higgs production. • Our NNLO predictions agrees with the results by Catani et al, Harlander and Kilgore. No need for explicit computation of soft contributions for the Higgs production. • Our N 3 LO predictions (without δ (1 − z ) part) for soft plus virtual contributions to Drell-Yan and Higgs productions agree with the results of Moch and Vogt • The scalar form factor F S = < P | ψψ | P > can be predicted at three loop from the known three loop A i , B i , f i and γ m i . • Soft plus Virtual part Higgs production through bottom quark fusion σ ( b + b → Higgs ) can be predicted upto N 3 LO (without δ (1 − z ) ). • Our NNLO predictions agrees with the results of by Harlander and Kilgore. - p. 14/24

  56. Hadro production in e + e − annihilation from DIS Bl¨ umlein and VR - p. 15/24

  57. Hadro production in e + e − annihilation from DIS Bl¨ umlein and VR • The scaling variable in DIS is q 2 − q 2 > 0 x Bj = − 2 p · q - p. 15/24

  58. Hadro production in e + e − annihilation from DIS Bl¨ umlein and VR • The scaling variable in DIS is q 2 − q 2 > 0 x Bj = − 2 p · q • The scaling variable in hadro production is x ee = 2 p · q q 2 > 0 q 2 - p. 15/24

  59. Hadro production in e + e − annihilation from DIS Bl¨ umlein and VR • The scaling variable in DIS is q 2 − q 2 > 0 x Bj = − 2 p · q • The scaling variable in hadro production is x ee = 2 p · q q 2 > 0 q 2 • Drell-Levy-Yan showed that these two processes are related by crossing relation. - p. 15/24

  60. Hadro production in e + e − annihilation from DIS Bl¨ umlein and VR • The scaling variable in DIS is q 2 − q 2 > 0 x Bj = − 2 p · q • The scaling variable in hadro production is x ee = 2 p · q q 2 > 0 q 2 • Drell-Levy-Yan showed that these two processes are related by crossing relation. • Gribov-Lipatov relation in the soft limit: a s , Q 2 , µ 2 , x Bj , ε ) a s , q 2 , µ 2 , x ee , ε ) Φ DIS (ˆ = Φ ee (ˆ ˜ P II ( x Bj ) = P II ( x ee ) Distributions - p. 15/24

  61. Hadro production in e + e − annihilation from DIS Bl¨ umlein and VR • The scaling variable in DIS is q 2 − q 2 > 0 x Bj = − 2 p · q • The scaling variable in hadro production is x ee = 2 p · q q 2 > 0 q 2 • Drell-Levy-Yan showed that these two processes are related by crossing relation. • Gribov-Lipatov relation in the soft limit: a s , Q 2 , µ 2 , x Bj , ε ) a s , q 2 , µ 2 , x ee , ε ) Φ DIS (ˆ = Φ ee (ˆ ˜ P II ( x Bj ) = P II ( x ee ) Distributions • From DIS results, we can predict soft plus virtual part of the coefficient functions for hadro production in e + e − annihilation upto three loop level. C (3) ,sv ( α s , z ) New result ee - p. 15/24

  62. Hadro production in e + e − annihilation from DIS Bl¨ umlein and VR • The scaling variable in DIS is q 2 − q 2 > 0 x Bj = − 2 p · q • The scaling variable in hadro production is x ee = 2 p · q q 2 > 0 q 2 • Drell-Levy-Yan showed that these two processes are related by crossing relation. • Gribov-Lipatov relation in the soft limit: a s , Q 2 , µ 2 , x Bj , ε ) a s , q 2 , µ 2 , x ee , ε ) Φ DIS (ˆ = Φ ee (ˆ ˜ P II ( x Bj ) = P II ( x ee ) Distributions • From DIS results, we can predict soft plus virtual part of the coefficient functions for hadro production in e + e − annihilation upto three loop level. C (3) ,sv ( α s , z ) New result ee - p. 15/24

  63. Threshold Resummation VR • Alternate derivation for the threshold resummation formula in z space for both DY and DIS: ( Z q 2 (1 − z ) 2 m δ P dλ 2 m Φ I a s , q 2 , µ 2 , z, ε ) a s ( λ 2 ) ` ´ P (ˆ = λ 2 A I 1 − z µ 2 R )! I q 2 (1 − z ) 2 m δ P ` ` ´ ´ + G a s , ε P + „ q 2 δ P « i ε ∞ 2 φ I, ( i ) X a i S i ε ˆ + δ (1 − z ) ˆ ( ε ) s P µ 2 i =1 ! i ε ∞ µ 2 2 „ m « I, ( i ) ( ε ) X a i R S i + ˆ ε K s µ 2 1 − z + i =1 - p. 16/24

  64. Threshold Resummation VR • Alternate derivation for the threshold resummation formula in z space for both DY and DIS: ( Z q 2 (1 − z ) 2 m δ P dλ 2 m Φ I a s , q 2 , µ 2 , z, ε ) a s ( λ 2 ) ` ´ P (ˆ = λ 2 A I 1 − z µ 2 R )! I q 2 (1 − z ) 2 m δ P ` ` ´ ´ + G a s , ε P + „ q 2 δ P « i ε ∞ 2 φ I, ( i ) X a i S i ε ˆ + δ (1 − z ) ˆ ( ε ) s P µ 2 i =1 ! i ε ∞ µ 2 2 „ m « I, ( i ) ( ε ) X a i R S i + ˆ ε K s µ 2 1 − z + i =1 I • The threshold exponents D I i for DY and B I i for DIS are related to G P ( ε = 0) . I P ( ε = 0) upto three loop gives D I i and B I • G i for i = 1 , 2 , 3 - p. 16/24

  65. Threshold Resummation VR • Alternate derivation for the threshold resummation formula in z space for both DY and DIS: ( Z q 2 (1 − z ) 2 m δ P dλ 2 m Φ I a s , q 2 , µ 2 , z, ε ) a s ( λ 2 ) ` ´ P (ˆ = λ 2 A I 1 − z µ 2 R )! I q 2 (1 − z ) 2 m δ P ` ` ´ ´ + G a s , ε P + „ q 2 δ P « i ε ∞ 2 φ I, ( i ) X a i S i ε ˆ + δ (1 − z ) ˆ ( ε ) s P µ 2 i =1 ! i ε ∞ µ 2 2 „ m « I, ( i ) ( ε ) X a i R S i + ˆ ε K s µ 2 1 − z + i =1 I • The threshold exponents D I i for DY and B I i for DIS are related to G P ( ε = 0) . I P ( ε = 0) upto three loop gives D I i and B I • G i for i = 1 , 2 , 3 “ ” 2Φ I • Expansion of C e P leads to soft part of the cross section. • Fixed order N 3 LO soft plus virtual cross sections can be computed(except δ (1 − z ) ) - p. 16/24

  66. Soft plus Virtual part at N 3 LO for Higgs Production Moch, Vogt and VR - p. 17/24

  67. Soft plus Virtual part at N 3 LO for Higgs Production Moch, Vogt and VR Z 1 τ = m 2 dx σ ab “ τ ” 2 S dσ P 1 P 2 ( τ, m h ) = X h x Φ ab ( x ) 2ˆ s d ˆ x, m h S τ ab - p. 17/24

  68. Soft plus Virtual part at N 3 LO for Higgs Production Moch, Vogt and VR Z 1 τ = m 2 dx σ ab “ τ ” 2 S dσ P 1 P 2 ( τ, m h ) = X h x Φ ab ( x ) 2ˆ s d ˆ x, m h S τ ab • Finite terms in F I and Φ I at 3-loop are still missing - p. 17/24

  69. Soft plus Virtual part at N 3 LO for Higgs Production Moch, Vogt and VR Z 1 τ = m 2 dx σ ab “ τ ” 2 S dσ P 1 P 2 ( τ, m h ) = X h x Φ ab ( x ) 2ˆ s d ˆ x, m h S τ ab • Finite terms in F I and Φ I at 3-loop are still missing • We can not predict δ (1 − z ) part at 3-loop. - p. 17/24

  70. Soft plus Virtual part at N 3 LO for Higgs Production Moch, Vogt and VR Z 1 τ = m 2 dx σ ab “ τ ” 2 S dσ P 1 P 2 ( τ, m h ) = X h x Φ ab ( x ) 2ˆ s d ˆ x, m h S τ ab • Finite terms in F I and Φ I at 3-loop are still missing • We can not predict δ (1 − z ) part at 3-loop. • At 3-loop we can predict all D j j = 5 , 4 , 3 , 2 , 1 , 0 - p. 17/24

  71. Soft plus Virtual part at N 3 LO for Higgs Production Moch, Vogt and VR Z 1 τ = m 2 dx σ ab “ τ ” 2 S dσ P 1 P 2 ( τ, m h ) = X h x Φ ab ( x ) 2ˆ s d ˆ x, m h S τ ab • Finite terms in F I and Φ I at 3-loop are still missing • We can not predict δ (1 − z ) part at 3-loop. • At 3-loop we can predict all D j j = 5 , 4 , 3 , 2 , 1 , 0 • At 4-loop, we can predict only D j j = 7 , 6 , 5 , 4 , 3 , 2 - p. 17/24

  72. Soft plus Virtual part at N 3 LO for Higgs Production Moch, Vogt and VR Z 1 τ = m 2 dx σ ab “ τ ” 2 S dσ P 1 P 2 ( τ, m h ) = X h x Φ ab ( x ) 2ˆ s d ˆ x, m h S τ ab 70 σ (pb) LHC(14 TeV) • Finite terms in F I and Φ I at 3-loop are still N 4 LO(pSV) 60 N 3 LO(pSV) missing NNLO NLO LO 50 • We can not predict δ (1 − z ) part at 3-loop. 40 • At 3-loop we can predict all 30 D j j = 5 , 4 , 3 , 2 , 1 , 0 20 • At 4-loop, we can predict only 10 D j j = 7 , 6 , 5 , 4 , 3 , 2 100 150 200 250 m H • They contribute bulk of the cross section Gluon flux is largest at LHC - p. 17/24

  73. Scale variation at N 3 LO for Higgs production N = σ N i LO ( µ ) σ N i LO ( µ 0 ) - p. 18/24

  74. Scale variation at N 3 LO for Higgs production N = σ N i LO ( µ ) σ N i LO ( µ 0 ) σ (pp → H+X) [pb]  s = 14 TeV √ 10 NNLO NLO LO Harlander 1 100 120 140 160 180 200 220 240 260 280 300 M H [GeV] - p. 18/24

  75. Scale variation at N 3 LO for Higgs production N = σ N i LO ( µ ) σ N i LO ( µ 0 ) σ (pp → H+X) [pb]  s = 14 TeV √ 1.4 R-Ratio LHC(14 TeV) LO NLO NNLO N 3 LO(pSV) 1.2 N 4 LO(pSV) 10 1 NNLO NLO LO Harlander 0.8 1 0.5 1 1.5 2 100 120 140 160 180 200 220 240 260 280 300 µ / µ 0 M H [GeV] - p. 18/24

  76. Scale variation at N 3 LO for Higgs production N = σ N i LO ( µ ) σ N i LO ( µ 0 ) σ (pp → H+X) [pb]  s = 14 TeV √ 1.4 R-Ratio LHC(14 TeV) LO NLO NNLO N 3 LO(pSV) 1.2 N 4 LO(pSV) 10 1 NNLO NLO LO Harlander 0.8 1 0.5 1 1.5 2 100 120 140 160 180 200 220 240 260 280 300 µ / µ 0 M H [GeV] • Scale uncertainity improves a lot • Perturbative QCD works at LHC - p. 18/24

  77. Soft distribution for rapidity VR,Smith and van Neerven Using RGE and Factorisation: - p. 19/24

  78. Soft distribution for rapidity VR,Smith and van Neerven Using RGE and Factorisation: Φ I a s , q 2 , µ 2 , z 1 , z 2 , ε ) Φ I d,f inite + Φ I d (ˆ = d,singular - p. 19/24

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend