transverse momentum resummation for drell yan lepton pair
play

Transverse-momentum resummation for Drell-Yan lepton pair production - PowerPoint PPT Presentation

Transverse-momentum resummation for Drell-Yan lepton pair production at NNLL accuracy Giancarlo Ferrera ferrera@fi.infn.it Universit` a di Firenze In collaboration with: G. Bozzi, S. Catani, D. de Florian & M. Grazzini Outline Drell-Yan


  1. Transverse-momentum resummation for Drell-Yan lepton pair production at NNLL accuracy Giancarlo Ferrera ferrera@fi.infn.it Universit` a di Firenze In collaboration with: G. Bozzi, S. Catani, D. de Florian & M. Grazzini

  2. Outline Drell-Yan q T distribution and fixed order results 1 Transverse-momentum resummation 2 Resummed results 3 Conclusions and Perspectives 4 Giancarlo Ferrera – Universit` a di Firenze HP2.3 Florence – 16/9/2010 Transverse-momentum resummation for DY at NNLL accuracy 2/16

  3. Drell-Yan q T distribution q T resummation Resummed results Conclusions Motivations The study of Drell-Yan lepton pair production is well motivated: Large production rates and clean experimental signatures: Important for detector calibration. Possible use as luminosity monitor. Transverse momentum distributions needed for: Precise prediction for M W . Beyond the Standard Model analysis. Test of perturbative QCD predictions. Constrain for fits of PDFs. Giancarlo Ferrera – Universit` a di Firenze HP2.3 Florence – 16/9/2010 Transverse-momentum resummation for DY at NNLL accuracy 3/16

  4. Drell-Yan q T distribution q T resummation Resummed results Conclusions State of the art: fixed order calculations Historically the Drell-Yan process [Drell,Yan(’70)] was the first application of parton model ideas developed for deep inelastic scattering. QCD corrections: Total cross section known up to NNLO ( O ( α 2 S )) [Hamberg,Van Neerven,Matsuura(’91)], [Harlander,Kilgore(’02)] Rapidity distribution known up to NNLO [Anastasiou,Dixon,Melnikov,Petriello(’03)] Fully exclusive NNLO calculation completed [Melnikov,Petriello(’06)], [Catani,Cieri,de Florian,G.F., Grazzini(’09)] Vector boson transverse-momentum distribution known up to NLO ( O ( α 2 S )) [Ellis et al.(’83)],[Arnold,Reno(’89)], [Gonsalves et al.(’89)] Electroweak correction are know at O ( α ) [Dittmaier et al.(’02)],[Baur et al.(’02)] Giancarlo Ferrera – Universit` a di Firenze HP2.3 Florence – 16/9/2010 Transverse-momentum resummation for DY at NNLL accuracy 4/16

  5. Drell-Yan q T distribution q T resummation Resummed results Conclusions h 1 ( x 1 ,µ 2 The Drell-Yan q T distribution h 1 ( p 1 ) f a F ) / . . > > > > ℓ 1 V ( M ) a ( x 1 p 1 ) ℓ 2 h 1 ( p 1 ) + h 2 ( p 2 ) → V ( M ) + X → ℓ 1 + ℓ 2 + X σ ˆ ab V = γ ∗ , Z 0 , W ± ℓ 1 ℓ 2 = ℓ + ℓ − , ℓν ℓ where and . . b ( x 2 p 2 ) X . > > > > . According to the QCD factorization theorem: h 2 ( p 2 ) h 2 ( x 2 ,µ 2 f b F ) / Z 1 Z 1 “ Λ 2 d σ F ) d ˆ σ ab ” X h 1 ( x 1 , µ 2 h 2 ( x 2 , µ 2 s ; α S ,µ 2 R ,µ 2 ( q T , M , s )= dx 1 dx 2 f a F ) f b ( q T , M , ˆ F ) + O . / / dq 2 dq 2 M 2 0 0 T T a , b The standard fixed-order QCD perturbative expansions gives: Z ∞ » – d ˆ σ q ¯ q c 12 log 2 ( M 2 / Q 2 M 2 / Q 2 dq T ∼ α S T ) + c 11 log( T ) + c 10 ( Q T ) dq 2 Q 2 T T » – + α 2 c 24 log 4 ( M 2 / Q 2 M 2 / Q 2 + O ( α 3 T ) + · · · + c 21 log( T ) + c 20 ( Q T ) S ) S Fixed order calculation theoretically justified only in the region q T ∼ M V For q T → 0 , α n S log m ( M 2 / q 2 T ) ≫ 1: need for resummation of logarithmic corrections Giancarlo Ferrera – Universit` a di Firenze HP2.3 Florence – 16/9/2010 Transverse-momentum resummation for DY at NNLL accuracy 5/16

  6. Drell-Yan q T distribution q T resummation Resummed results Conclusions h 1 ( x 1 ,µ 2 The Drell-Yan q T distribution h 1 ( p 1 ) f a F ) / . . > > > > ℓ 1 V ( M ) a ( x 1 p 1 ) ℓ 2 h 1 ( p 1 ) + h 2 ( p 2 ) → V ( M ) + X → ℓ 1 + ℓ 2 + X σ ˆ ab V = γ ∗ , Z 0 , W ± ℓ 1 ℓ 2 = ℓ + ℓ − , ℓν ℓ where and . . b ( x 2 p 2 ) X . > > > > . According to the QCD factorization theorem: h 2 ( p 2 ) h 2 ( x 2 ,µ 2 f b F ) / Z 1 Z 1 “ Λ 2 d σ F ) d ˆ σ ab ” X h 1 ( x 1 , µ 2 h 2 ( x 2 , µ 2 s ; α S ,µ 2 R ,µ 2 ( q T , M , s )= dx 1 dx 2 f a F ) f b ( q T , M , ˆ F ) + O . / / dq 2 dq 2 M 2 0 0 T T a , b The standard fixed-order QCD perturbative expansions gives: Z ∞ » – d ˆ σ q ¯ q c 12 log 2 ( M 2 / Q 2 M 2 / Q 2 dq T ∼ α S T ) + c 11 log( T ) + c 10 ( Q T ) dq 2 Q 2 T T » – + α 2 c 24 log 4 ( M 2 / Q 2 M 2 / Q 2 + O ( α 3 T ) + · · · + c 21 log( T ) + c 20 ( Q T ) S ) S Fixed order calculation theoretically justified only in the region q T ∼ M V For q T → 0 , α n S log m ( M 2 / q 2 T ) ≫ 1: need for resummation of logarithmic corrections Giancarlo Ferrera – Universit` a di Firenze HP2.3 Florence – 16/9/2010 Transverse-momentum resummation for DY at NNLL accuracy 5/16

  7. Drell-Yan q T distribution q T resummation Resummed results Conclusions h 1 ( x 1 ,µ 2 The Drell-Yan q T distribution h 1 ( p 1 ) f a F ) / . . > > > > ℓ 1 V ( M ) a ( x 1 p 1 ) ℓ 2 h 1 ( p 1 ) + h 2 ( p 2 ) → V ( M ) + X → ℓ 1 + ℓ 2 + X σ ˆ ab V = γ ∗ , Z 0 , W ± ℓ 1 ℓ 2 = ℓ + ℓ − , ℓν ℓ where and . . b ( x 2 p 2 ) X . > > > > . According to the QCD factorization theorem: h 2 ( p 2 ) h 2 ( x 2 ,µ 2 f b F ) / Z 1 Z 1 “ Λ 2 d σ F ) d ˆ σ ab ” X h 1 ( x 1 , µ 2 h 2 ( x 2 , µ 2 s ; α S ,µ 2 R ,µ 2 ( q T , M , s )= dx 1 dx 2 f a F ) f b ( q T , M , ˆ F ) + O . / / dq 2 dq 2 M 2 0 0 T T a , b The standard fixed-order QCD perturbative expansions gives: Z ∞ » – d ˆ σ q ¯ q c 12 log 2 ( M 2 / Q 2 M 2 / Q 2 dq T ∼ α S T ) + c 11 log( T ) + c 10 ( Q T ) dq 2 Q 2 T T » – + α 2 c 24 log 4 ( M 2 / Q 2 M 2 / Q 2 + O ( α 3 T ) + · · · + c 21 log( T ) + c 20 ( Q T ) S ) S Fixed order calculation theoretically justified only in the region q T ∼ M V For q T → 0 , α n S log m ( M 2 / q 2 T ) ≫ 1: need for resummation of logarithmic corrections Giancarlo Ferrera – Universit` a di Firenze HP2.3 Florence – 16/9/2010 Transverse-momentum resummation for DY at NNLL accuracy 5/16

  8. Drell-Yan q T distribution q T resummation Resummed results Conclusions h 1 ( x 1 ,µ 2 The Drell-Yan q T distribution h 1 ( p 1 ) f a F ) / . . > > > > ℓ 1 V ( M ) a ( x 1 p 1 ) ℓ 2 h 1 ( p 1 ) + h 2 ( p 2 ) → V ( M ) + X → ℓ 1 + ℓ 2 + X σ ˆ ab V = γ ∗ , Z 0 , W ± ℓ 1 ℓ 2 = ℓ + ℓ − , ℓν ℓ where and . . b ( x 2 p 2 ) X . > > > > . According to the QCD factorization theorem: h 2 ( p 2 ) h 2 ( x 2 ,µ 2 f b F ) / Z 1 Z 1 “ Λ 2 d σ F ) d ˆ σ ab ” X h 1 ( x 1 , µ 2 h 2 ( x 2 , µ 2 s ; α S ,µ 2 R ,µ 2 ( q T , M , s )= dx 1 dx 2 f a F ) f b ( q T , M , ˆ F ) + O . / / dq 2 dq 2 M 2 0 0 T T a , b The standard fixed-order QCD perturbative expansions gives: Z ∞ » – d ˆ σ q ¯ q c 12 log 2 ( M 2 / Q 2 M 2 / Q 2 dq T ∼ α S T ) + c 11 log( T ) + c 10 ( Q T ) dq 2 Q 2 T T » – + α 2 c 24 log 4 ( M 2 / Q 2 M 2 / Q 2 + O ( α 3 T ) + · · · + c 21 log( T ) + c 20 ( Q T ) S ) S Fixed order calculation theoretically justified only in the region q T ∼ M V For q T → 0 , α n S log m ( M 2 / q 2 T ) ≫ 1: need for resummation of logarithmic corrections Giancarlo Ferrera – Universit` a di Firenze HP2.3 Florence – 16/9/2010 Transverse-momentum resummation for DY at NNLL accuracy 5/16

  9. Drell-Yan q T distribution q T resummation Resummed results Conclusions Fixed order results: q T spectrum of Drell-Yan l + l − pairs at √ s = 1 . 96 TeV D0 data normalized to 1: [D0 Coll.(’08,’10)] Factorization and renormalization scale variations: µ F = µ R = m Z , m Z / 2 ≤ µ F , µ R ≤ 2 m Z , 1 / 2 ≤ µ F /µ R ≤ 2. LO and NLO scale variations bands overlap only for q T > 60 GeV Good agreement between NLO results and data up to q T ∼ 20 GeV . < 20 GeV ) LO and In the small q T region ( q T ∼ NLO result diverges to + ∞ and −∞ (accidental partial agreement at q T ∼ 5 − 7 GeV ): need for resummation. < 20 GeV ) effects of soft-gluon resummation are essential In the small q T region ( q T ∼ At Tevatron 90% of the W ± and Z 0 are produced with q T ∼ < 20 GeV Giancarlo Ferrera – Universit` a di Firenze HP2.3 Florence – 16/9/2010 Transverse-momentum resummation for DY at NNLL accuracy 6/16

  10. Drell-Yan q T distribution q T resummation Resummed results Conclusions Fixed order results: q T spectrum of Drell-Yan l + l − pairs at √ s = 1 . 96 TeV D0 data normalized to 1: [D0 Coll.(’08,’10)] Factorization and renormalization scale variations: µ F = µ R = m Z , m Z / 2 ≤ µ F , µ R ≤ 2 m Z , 1 / 2 ≤ µ F /µ R ≤ 2. LO and NLO scale variations bands overlap only for q T > 60 GeV Good agreement between NLO results and data up to q T ∼ 20 GeV . < 20 GeV ) LO and In the small q T region ( q T ∼ NLO result diverges to + ∞ and −∞ (accidental partial agreement at q T ∼ 5 − 7 GeV ): need for resummation. < 20 GeV ) effects of soft-gluon resummation are essential In the small q T region ( q T ∼ At Tevatron 90% of the W ± and Z 0 are produced with q T ∼ < 20 GeV Giancarlo Ferrera – Universit` a di Firenze HP2.3 Florence – 16/9/2010 Transverse-momentum resummation for DY at NNLL accuracy 6/16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend