transverse momentum distributions and the determination
play

Transverse momentum distributions and the determination of the W - PowerPoint PPT Presentation

Transverse momentum distributions and the determination of the W mass Andrea Signori Loop Fest XVIII Fermilab August 13 th , 2019 1 TMDs 2 TMD PDFs extraction of a parton whose momentum has longitudinal and transverse components


  1. Transverse momentum distributions 
 and the determination of the W mass Andrea Signori Loop Fest XVIII Fermilab August 13 th , 2019 1

  2. TMDs 2

  3. TMD PDFs extraction of a parton whose momentum has 
 longitudinal and transverse components with respect to the parent hadron momentum richer structure 
 than collinear PDFs probe hadron momentum courtesy A. Bacchetta 3

  4. Motivations Nucleon tomography in momentum space : to understand how hadrons are built in terms of the elementary degrees of freedom of QCD High-energy phenomenology : to improve our understanding of high-energy scattering experiments and their potential to explore BSM physics 4

  5. Quark TMD PDFs Φ ij ( k, P ; S, T ) ⇠ F.T. h PST | ¯ ψ j (0) U [0 , ξ ] ψ i ( ξ ) | PST i | LF U L T i σ i + γ 5 γ + γ + γ 5 Quarks k T P xP h ⊥ U f 1 1 extraction of a quark not collinear with the proton h ⊥ L g 1 1 L f ⊥ h 1 , h ⊥ T g 1 T 1 T 1 T encode all the possible h ⊥ LL f 1 LL spin-spin and spin-momentum 1 LL correlations g 1 LT h 1 LT , h ⊥ LT f 1 LT Sivers TMD PDF between the proton 1 LT and its constituents unpolarized TMD PDF g 1 T T h 1 T T , h ⊥ TT f 1 T T 1 T T similar table for gluons and for fragmentation functions bold : also collinear red : time-reversal odd (universality properties) 5

  6. TMD factorization at work Scimemi, Vladimirov [Eur.Phys.J. C78 2018 89] + Scimemi, Vladimirov, Bertone (1902.08474) Schematically : d σ ∼ H f 1 ( x a , k T a , Q ) f 1 ( x b , k T b , Q ) δ (2) ( q T − k T a − k T b ) + O ( q T /Q ) + O ( m/Q ) dq T Low transverse momentum (TMD) region q T ⌧ Q 6

  7. TMD factorization at work Scimemi, Vladimirov [Eur.Phys.J. C78 2018 89] + Scimemi, Vladimirov, Bertone (1902.08474) Schematically : d σ ∼ H f 1 ( x a , k T a , Q ) f 1 ( x b , k T b , Q ) δ (2) ( q T − k T a − k T b ) + O ( q T /Q ) + O ( m/Q ) dq T Low transverse momentum (TMD) region q T ⌧ Q Matching to fixed-order calculations 
 in coll. factorization 7

  8. TMD factorization at work �� Bacchetta, Delcarro, Pisano, Radici, AS (1703.10157) : 
 〈 � � 〉 = �� ��� � 〈 � � 〉 = �� ��� � 〈 � 〉 = ����� 〈 � 〉 = ����� unpolarized TMD fit including SIDIS , Drell-Yan fixed-target, Z production � ����������������� � � SIDIS @ Compass f a 1 ( x a , k 2 aT , Q 2 ) ⊗ f b 1 ( x b , k 2 bT , Q 2 ) � pp : �� 〈 � � 〉 = ��� ��� � 〈 � � 〉 = ��� ��� � 〈 � � 〉 = ��� ��� � 〈 � � 〉 = ��� ��� � 〈 � 〉 = ����� 〈 � 〉 = ����� 〈 � 〉 = ����� 〈 � 〉 = ����� � 〈 � 〉 = ���� ( ������ = � ) ����������������� 〈 � 〉 = ���� ( ������ = � ) 〈 � 〉 = ���� ( ������ = � ) � 〈 � 〉 = ���� ( ������ = � ) 〈 � 〉 = ���� ( ������ = � ) 〈 � 〉 = ���� ( ������ = � ) � 〈 � 〉 = ���� ( ������ = � ) f a 1 ( x a , k 2 aT , Q 2 ) ⊗ D a → h ( z a , P 2 T , Q 2 ) ep : 1 � �� ��� ��� ��� 〈 � � 〉 = �� ��� � 〈 � � 〉 = �� ��� � 〈 � � 〉 = �� ��� � 〈 � � 〉 = �� ��� � � �� [ ��� ] 〈 � 〉 = ����� 〈 � 〉 = ����� 〈 � 〉 = ����� 〈 � 〉 = ����� � ����������������� � � � �� 〈 � � 〉 = ��� ��� � 〈 � � 〉 = ��� ��� � 〈 � � 〉 = �� ��� � 〈 � � 〉 = �� ��� � 〈 � � 〉 = �� ��� � 〈 � � 〉 = �� ��� � 〈 � 〉 = ����� 〈 � 〉 = ���� 〈 � 〉 = ����� 〈 � 〉 = ����� 〈 � 〉 = ����� 〈 � 〉 = ����� � ����������������� � � � ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� 8 � �� [ ��� ] � �� [ ��� ] � �� [ ��� ] � �� [ ��� ] � �� [ ��� ] � �� [ ��� ]

  9. TMD factorization at work �� Bacchetta, Delcarro, Pisano, Radici, AS (1703.10157) : 
 〈 � � 〉 = �� ��� � 〈 � � 〉 = �� ��� � 〈 � 〉 = ����� 〈 � 〉 = ����� unpolarized TMD fit including SIDIS , Drell-Yan fixed-target, Z production � ����������������� � � SIDIS @ Compass f a 1 ( x a , k 2 aT , Q 2 ) ⊗ f b 1 ( x b , k 2 bT , Q 2 ) � pp : �� 〈 � � 〉 = ��� ��� � 〈 � � 〉 = ��� ��� � 〈 � � 〉 = ��� ��� � 〈 � � 〉 = ��� ��� � 〈 � 〉 = ����� 〈 � 〉 = ����� 〈 � 〉 = ����� 〈 � 〉 = ����� � 〈 � 〉 = ���� ( ������ = � ) ����������������� 〈 � 〉 = ���� ( ������ = � ) 〈 � 〉 = ���� ( ������ = � ) � 〈 � 〉 = ���� ( ������ = � ) 〈 � 〉 = ���� ( ������ = � ) 〈 � 〉 = ���� ( ������ = � ) � 〈 � 〉 = ���� ( ������ = � ) f a 1 ( x a , k 2 aT , Q 2 ) ⊗ D a → h ( z a , P 2 T , Q 2 ) ep : 1 � �� ��� ��� ��� 〈 � � 〉 = �� ��� � 〈 � � 〉 = �� ��� � 〈 � � 〉 = �� ��� � 〈 � � 〉 = �� ��� � � �� [ ��� ] 〈 � 〉 = ����� 〈 � 〉 = ����� 〈 � 〉 = ����� 〈 � 〉 = ����� � ����������������� � e + e − : D a → h 1 1 T , Q 2 ) ⊗ D b → h 2 ( z 1 , P 2 ( z 2 , P 2 2 T , Q 2 ) 1 1 � � �� 〈 � � 〉 = ��� ��� � 〈 � � 〉 = ��� ��� � 〈 � � 〉 = �� ��� � 〈 � � 〉 = �� ��� � 〈 � � 〉 = �� ��� � 〈 � � 〉 = �� ��� � 〈 � 〉 = ����� 〈 � 〉 = ���� 〈 � 〉 = ����� 〈 � 〉 = ����� 〈 � 〉 = ����� 〈 � 〉 = ����� � Data not available yet! 
 ����������������� � Needed for independent analyses 
 of TMD FFs � � ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� 9 � �� [ ��� ] � �� [ ��� ] � �� [ ��� ] � �� [ ��� ] � �� [ ��� ] � �� [ ��� ]

  10. Structure of a TMD PDF 1 ( x, b 2 1 ( x, b 2 f a T , µ f , ζ f ) = f a T , µ i , ζ i ) b T , Fourier conjugate of k T ⇢ Z µ f  �� dµ α s ( µ ) , ζ f evolution in mu two “evolution scales” × exp µ γ F µ 2 µ i → µ f µ i ◆ − K ( b T ,µ i ) ✓ ζ f evolution in zeta × ζ i → ζ f ζ i Input TMD distribution can be expanded at low b T on the collinear distributions f a X 1 ( x, b 2 C a/b ( x, b 2 T , µ i , ζ i ) = T , µ i , ζ i ) ⊗ f b ( x, µ i ) b ζ i = µ 2 i = 4 e − 2 γ E /b 2 T ≡ µ 2 A sensible choice is to set the 
 b initial and final scale as: ζ f = µ 2 f = Q 2 10

  11. Structure of a TMD PDF 1 ( x, b 2 1 ( x, b 2 f a T , µ f , ζ f ) = f a T , µ i , ζ i ) b T , Fourier conjugate of k T ⇢ Z µ f  �� dµ α s ( µ ) , ζ f evolution in mu two “evolution scales” × exp µ γ F µ 2 µ i → µ f µ i − g K ( b T , { λ } ) ◆ − K ( b T ,µ i ) ✓ ζ f evolution in zeta × ζ i → ζ f ζ i need corrections 
 at large bT Input TMD distribution can be expanded at low b T on the collinear distributions f a X 1 ( x, b 2 C a/b ( x, b 2 F a T , µ i , ζ i ) = T , µ i , ζ i ) ⊗ f b ( x, µ i ) NP ( x, b T ; { λ } ) b ζ i = µ 2 i = 4 e − 2 γ E /b 2 T ≡ µ 2 A sensible choice is to set the 
 b initial and final scale as: ζ f = µ 2 f = Q 2 11

  12. Structure of a TMD PDF 1 ( x, b 2 1 ( x, b 2 f a T , µ f , ζ f ) = f a T , µ i , ζ i ) b T , Fourier conjugate of k T ⇢ Z µ f  �� dµ α s ( µ ) , ζ f evolution in mu two “evolution scales” × exp µ γ F µ 2 µ i → µ f µ i − g K ( b T , { λ } ) ◆ − K ( b T ,µ i ) ✓ ζ f evolution in zeta × ζ i → ζ f ζ i Non-perturbative structures Input TMD distribution can be expanded at low b T on the collinear distributions f a X 1 ( x, b 2 C a/b ( x, b 2 F a f b ( x, µ i ) T , µ i , ζ i ) = T , µ i , ζ i ) ⊗ f b ( x, µ i ) NP ( x, b T ; { λ } ) b ζ i = µ 2 i = 4 e − 2 γ E /b 2 T ≡ µ 2 A sensible choice is to set the 
 b initial and final scale as: ζ f = µ 2 f = Q 2 12

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend