threshold resummation at nlp drell yan qq channel and gg h
play

Threshold resummation at NLP: Drell-Yan qq channel and gg H Robert - PowerPoint PPT Presentation

Threshold resummation at NLP: Drell-Yan qq channel and gg H Robert Szafron Technische Universit at M unchen SCET 2019 25-28 March UC San Diego Robert Szafron 1/20 Leading-logarithmic threshold resummation of the Drell-Yan process


  1. Threshold resummation at NLP: Drell-Yan qq channel and gg → H Robert Szafron Technische Universit¨ at M¨ unchen SCET 2019 25-28 March UC San Diego Robert Szafron 1/20

  2. Leading-logarithmic threshold resummation of the Drell-Yan process at next-to-leading power Martin Beneke, Alessandro Broggio, Mathias Garny, Sebastian Ja´ skiewicz, Robert Szafron, Leonardo Vernazza and Jian Wang arXiv:1809.10631 ◮ Operator basis and renormalization ֒ → see talk by Martin ◮ Factorization theorem and evaluation of collinear functions ֒ → see talk by Sebastian Robert Szafron 1/20

  3. Outline ◮ Hard function ◮ Kinematic corrections ◮ Soft function ◮ Fixed order expansion ◮ Higgs threshold production � � ∞ dσ α n dz = c n δ (1 − z ) s n =0    � ln m (1 − z ) � 2 n − 1 �  c nm + d nm ln m (1 − z )  + . . .  + 1 − z + m =0 ◮ Leading power ◮ Next-to-leading power → α s ln(1 − z ) + α 2 s ln 3 (1 − z ) + . . . ◮ Leading Log: m = 2 n − 1 − Robert Szafron 1/20

  4. DY cross-section A ( p A ) B ( p B ) → DY( Q ) + X z = Q 2 threshold z → 1 ˆ s Ω ∼ Q (1 − z ) Factorization theorem valid at LL accuracy � � d 3 � q 1 s ) × Q 2 d 4 x e i ( x a p A + x b p B − q ) · x σ ( z ) ˆ = H (ˆ � (2 π ) 3 2 Q 2 + � 2 π q 2 � � � S 0 ( x ) + 2 · 1 � dω J ( O ) 2 ξ ( x a n + p A ; ω ) � × S 2 ξ ( x, ω ) + ¯ c -term 2 Scales: ◮ hard µ h ∼ Q ◮ collinear µ c ∼ √ Q Ω (no LL collinear contribution at NLP) ◮ soft µ s ∼ Ω Q ≫ Ω Robert Szafron 1/20

  5. Hard Function ˆ σ ( z ) = H (ˆ s ) � � d 3 � q 1 Q 2 d 4 x e i ( x a p A + x b p B − q ) · x � × (2 π ) 3 2 Q 2 + � 2 π q 2 � � � S 0 ( x ) + 2 · 1 dω J ( O ) � 2 ξ ( x a n + p A ; ω ) � S 2 ξ ( x, ω ) + ¯ c -term × 2 Robert Szafron 1/20

  6. Hard function When considering power corrections we have to be careful about kinematic factors. Consider the hard function � ¯ C A 0 ( t, ¯ t ) J A 0 s, µ h ) = | C A 0 ( − ˆ s ) | 2 dt d ¯ t � µ ( t, ¯ ψγ µ ψ (0) = t ) , H (ˆ s around Q 2 We can obtain power corrections from expansion of ˆ s ) = H ( Q 2 ) + Q 2 (1 − z ) H ′ ( Q 2 ) + . . . H (ˆ Robert Szafron 2/20

  7. Hard function When considering power corrections we have to be careful about kinematic factors. Consider the hard function � ¯ C A 0 ( t, ¯ t ) J A 0 s, µ h ) = | C A 0 ( − ˆ s ) | 2 dt d ¯ t � µ ( t, ¯ ψγ µ ψ (0) = t ) , H (ˆ s around Q 2 We can obtain power corrections from expansion of ˆ s ) = H ( Q 2 ) + Q 2 (1 − z ) H ′ ( Q 2 ) + . . . H (ˆ This correction modifies the LP factorization σ ( z ) = H ( Q 2 ) QS DY ( Q (1 − z )) + Q 2 (1 − z ) H ′ ( Q 2 ) QS DY ( Q (1 − z )) ˆ with � � µ �� α s ln 2 H (ˆ s ) = 1 + O and S DY (Ω) = δ (Ω) + O ( α s ) µ h s ln 2 � � µ This contributions starts at α 2 so at the LL accuracy it is enough µ h s ) by H ( Q 2 ) to replace H (ˆ Robert Szafron 2/20

  8. Kinematic corrections ˆ σ ( z ) = H (ˆ s ) Q 2 � � d 3 � q 1 d 4 x e i ( x a p A + x b p B − q ) · x (2 π ) 3 2 √ × 2 π Q 2 + � q 2 � � � S 0 ( x ) + 2 · 1 dω J ( O ) � 2 ξ ( x a n + p A ; ω ) � S 2 ξ ( x, ω ) + ¯ c -term × 2 Robert Szafron 2/20

  9. Kinematic corrections I At LP we only need the soft function at x = x 0 but for now consider the soft function for generic x S 0 ( x ) = 1 � T ( Y † + ( x ) Y − ( x )) T ( Y † N c Tr � 0 | ¯ − (0) Y + (0)) | 0 � Use partonic center-of-mass frame x a � p A + x b � p B = 0 Momentum � p X s of the soft hadronic final state is balanced by the lepton-pair � q + � p X s = 0 √ q 0 = q ∼ λ 2 , s + O ( λ 2 ) � ˆ Energy of the soft radiation √ � q 2 � λ 6 � q 2 = Ω ∗ 2 − � [ x 1 p 1 + x 2 p 2 − q ] 0 = p 0 Q 2 + � X s = ˆ s − 2 Q + O with Ω ∗ = 2 Q 1 − √ z � λ 6 � = Q (1 − z ) + 3 4 Q (1 − z ) 2 + O √ z Robert Szafron 3/20

  10. Kinematic corrections II Expansion of the kinematic factors leads to � � d 3 � q 1 d 4 x e i ( x a p A + x b p B − q ) · x � Q S 0 ( x ) � (2 π ) 3 2 Q 2 + � 2 π q 2 � dx 0 � λ 4 �� 1 + ix 0 ∂ 2 � 4 π e ix 0 Ω ∗ / 2 S 0 ( x 0 , � � � x → + O x ) | � x =0 2 Q → S DY ( Q (1 − z )) + 1 QS K 1 ( Q (1 − z )) + 1 QS K 2 ( Q (1 − z )) + O ( λ 4 ) NLP kinematic soft functions ∂ ∂ Ω ∂ 2 S K 1 (Ω) = x S 0 (Ω , � x ) | � � x =0 3 4 Ω 2 ∂ S K 2 (Ω) = ∂ Ω S 0 (Ω , � x ) | � x =0 Robert Szafron 4/20

  11. Kinematic corrections III It is more convenient to introduce ∆ ab ( z ) = ˆ σ ab ( z ) z ∆ LP σ LP ab ( z ) but ∆ NLP ab ( z ) = ˆ ( z ) receives additional NLP correction ab (1 − z ) × ˆ σ LP ( z ) which leads to S K 3 (Ω) = Ω S 0 (Ω , � x ) | � x =0 Factorization theorem for ∆( z ) = ∆ q ¯ q ( z ): H ( Q 2 ) ∆( z ) = � � 3 1 × Q S DY ( Q (1 − z )) + QS Ki ( Q (1 − z )) i =1 � � +2 · 1 dω J ( O ) 2 ξ ( x a n + p A ; ω ) � S 2 ξ ( x, ω ) + ¯ c -term 2 No further expansion in λ is needed! Robert Szafron 5/20

  12. Example: expansion of the soft function RGE I In position space, renormalization of the LP soft function is multiplicative � � d � � S 0 ( x ) = 2Γ cusp L − 2 γ W S 0 ( x ) d ln µ � � − 1 4 n − xn + xµ 2 e 2 γ E L ≡ ln γ W = O ( α 2 s ) Robert Szafron 6/20

  13. Example: expansion of the soft function RGE I In position space, renormalization of the LP soft function is multiplicative � � d � � S 0 ( x ) = 2Γ cusp L − 2 γ W S 0 ( x ) d ln µ � � − 1 4 n − xn + xµ 2 e 2 γ E L ≡ ln γ W = O ( α 2 s ) Expansion of the soft function, x = ( x 0 , 0 , 0 , z ) S 0 ( x 0 ) + . . . + 1 x =0 z 2 + . . . S 0 ( x ) = � � ∂ 2 � z � S 0 ( x ) | � 2 Robert Szafron 6/20

  14. Example: expansion of the soft function RGE I In position space, renormalization of the LP soft function is multiplicative � � d � � S 0 ( x ) = 2Γ cusp L − 2 γ W S 0 ( x ) d ln µ � � − 1 4 n − xn + xµ 2 e 2 γ E L ≡ ln γ W = O ( α 2 s ) Expansion of the soft function, x = ( x 0 , 0 , 0 , z ) S 0 ( x 0 ) + . . . + 1 x =0 z 2 + . . . S 0 ( x ) = � � ∂ 2 � z � S 0 ( x ) | � 2 Expansion of the log generates inhomogeneous term � z 4 � z 2 L = L 0 − ( x 0 ) 2 + O ( x 0 ) 4 � � − 1 4( x 0 ) 2 µ 2 e 2 γ E L 0 ≡ ln Robert Szafron 6/20

  15. Example: expansion of the soft function RGE II Coefficient of z 2 gives � � 1 d 1 2 ∂ 2 � � ∂ 2 z � z � ( x 0 ) 2 � S 0 ( x ) | � x =0 = 2Γ cusp L 0 − 2 γ W S 0 ( x ) | � x =0 − S 0 ( x 0 ) d ln µ 2 2 Define soft functions ix 0 � � ∂ 2 z � S 3 ( x 0 ) = S 0 ( x ) | � x =0 2 − 2 i � � S x 0 ( x 0 ) = S ( x 0 ) x 0 − iε Robert Szafron 7/20

  16. Example: expansion of the soft function RGE II Coefficient of z 2 gives � � 1 d 1 2 ∂ 2 � � ∂ 2 z � z � ( x 0 ) 2 � S 0 ( x ) | � x =0 = 2Γ cusp L 0 − 2 γ W S 0 ( x ) | � x =0 − S 0 ( x 0 ) d ln µ 2 2 Define soft functions ix 0 � � ∂ 2 z � S 3 ( x 0 ) = S 0 ( x ) | � x =0 2 − 2 i � � S x 0 ( x 0 ) = S ( x 0 ) x 0 − iε Robert Szafron 7/20

  17. Example: expansion of the soft function RGE II Coefficient of z 2 gives � � 1 d 1 2 ∂ 2 � ∂ 2 � z � z � ( x 0 ) 2 � S 0 ( x ) | � x =0 = 2Γ cusp L 0 − 2 γ W S 0 ( x ) | � x =0 − S 0 ( x 0 ) d ln µ 2 2 Define soft functions ix 0 � � ∂ 2 z � S 3 ( x 0 ) = S 0 ( x ) | � x =0 2 − 2 i � � S x 0 ( x 0 ) = S ( x 0 ) x 0 − iε Soft functions mix � � d � S 3 ( x 0 ) + � � S 3 ( x 0 ) = 2Γ cusp L 0 − 2 γ W S x 0 ( x 0 ) d ln µ � � d � � S x 0 ( x 0 ) = 2Γ cusp L 0 − 2 γ W S x 0 ( x 0 ) d ln µ � � Note: � S 3 ( x 0 ) = O ( α s L 0 ) and � α s L 2 S x 0 ( x 0 ) = 1 + O 0 � S x 0 ( x 0 ) corresponds to θ -soft previously function defined in JHEP 1808 (2018) 013 by Ian Moult, Iain Stewart, Gherardo Vita, Hua Xing Zhu Robert Szafron 7/20

  18. RGE for kinematic soft functions Proceeding like in the example we obtain � � d S ( x 0 ) � 1 � = 2Γ cusp L 0 − 2 γ W S ( x ) d ln µ   0 0 0 +1   0 0 − 6 +3    � S ( x 0 ) + Γ cusp  0 0 0 − 4 0 0 0 0 � � T with � S ( x 0 ) = S K 1 , � � S K 2 , � S K 3 , � S x 0 � � d S K 1+ K 2+ K 3 ( x 0 ) = � S K 1+ K 2+ K 3 ( x 0 ) − 6 Γ cusp � � S K 3 ( x 0 ) , 2Γ cusp L 0 − 2 γ W d ln µ Note: � S K 1+ K 2+ K 3 ( x 0 ) = O ( α s ) No LL kinematic corrections to all orders! Robert Szafron 8/20

  19. Soft function ˆ σ ( z ) = H (ˆ s ) � � d 3 � 1 q Q 2 d 4 x e i ( x a p A + x b p B − q ) · x × � (2 π ) 3 2 Q 2 + � 2 π q 2 � � � S 0 ( x ) + 2 · 1 dω J ( O ) � 2 ξ ( x a n + p A ; ω ) � × S 2 ξ ( x, ω ) + ¯ c -term 2 Robert Szafron 8/20

  20. Time-ordered products Soft operator in position space � � � � − (0) Y + (0) i∂ ν � Y † Y † in − ∂ B + ⊥ S 2 ξ ( x, z − ) = ¯ + ( x ) Y − ( x ) ⊥ ν ( z − ) T T with decoupled soft fields B µ ± = Y † ± [ iD µ s Y ± ] Lagrangian is already multipole expanded → soft fields depend only on z − � / n + � 2 ξ = 1 L (2) χ c z µ ⊥ z ν i∂ ν in − ∂ B + 2 ¯ 2 χ c ⊥ µ Robert Szafron 9/20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend