the pentagram map and y patterns
play

The Pentagram Map and Y -patterns Max Glick University of Michigan - PowerPoint PPT Presentation

The Pentagram Map and Y -patterns Max Glick University of Michigan April 20, 2011 The pentagram map Given a polygon A , The pentagram map Given a polygon A , draw its shortest diagonals The pentagram map Given a polygon A , draw its shortest


  1. The Pentagram Map and Y -patterns Max Glick University of Michigan April 20, 2011

  2. The pentagram map Given a polygon A ,

  3. The pentagram map Given a polygon A , draw its shortest diagonals

  4. The pentagram map Given a polygon A , draw its shortest diagonals and use them as the sides of a new polygon T ( A ).

  5. The pentagram map Given a polygon A , draw its shortest diagonals and use them as the sides of a new polygon T ( A ). T is known as the pentagram map .

  6. Related work ◮ R. Schwartz, The pentagram map, Experiment. Math. 1 (1992), 71–81. ◮ R. Schwartz, Discrete monodromy, pentagrams, and the method of condensation, J. Fixed Point Theory Appl. 3 (2008), 379–409. ◮ V. Ovsienko, R. Schwartz, and S. Tabachnikov, The pentagram map: a discrete integrable system, Comm. Math. Phys. 299 (2010), 409-446. ◮ S. Morier-Genoud, V. Ovsienko, and S. Tabachnikov, 2-frieze patterns and the cluster structure of the space of polygons, arXiv:1008.3359

  7. Goals 1. Define coordinates on the space of n -gons and express the pentagram map T in these coordinates. 2. Give a non-recursive formula for T k = T ◦ T ◦ . . . ◦ T . � �� � k 3. Use this formula to better understand the long run behavior of the pentagram map.

  8. Theorem (R. Schwartz ( m even)) Let A be a closed, axis-aligned 2 m-gon. Then the vertices of T m − 2 ( A ) lie alternately on 2 lines. T m − 2

  9. Example (of theorem)

  10. Example (of theorem) 5 7 2 6 4 1 8 3

  11. Example (of theorem) 5 7 2 6 4 1 8 3

  12. Example (of theorem)

  13. Example (of theorem) 6 7 5 2 4 8 3 1

  14. Example (of theorem) 6 7 5 2 4 8 3 1

  15. Example (of theorem)

  16. Example (of theorem)

  17. b b b b bb b b b bb b b b b b b b b b b The space of twisted polygons A twisted polygon is a sequence A = ( A i ) i ∈ Z of points in the projective plane that is periodic modulo some projective transformation φ , i.e., A i + n = φ ( A i ) for all i ∈ Z . A 3 A 7 A 11 A 2 A 6 A 10 A 4 A 8 A 12 A 1 A 5 A 9 A 13 Let P n = { twisted n -gons } / ( projective equivalence ).

  18. b b b b b b b b b b Alternate Indexing Scheme A 4 B 3 . 5 A 0 = A 5 A 3 B 4 . 5 B 0 . 5 B 2 . 5 B 1 . 5 A 1 A 2 It is convenient to also allow twisted polygons to be indexed by 1 2 + Z . Let P ∗ n be the space of twisted polygons indexed in this manner, modulo projective equivalence.

  19. Cross Ratios The cross ratio of 4 real numbers a , b , c , d is defined to be χ ( a , b , c , d ) = ( a − b )( c − d ) ( a − c )( b − d ) ◮ The cross ratio of 4 collinear points in the plane is defined similarly using signed distances along the common line. ◮ Cross ratios are invariant under projective transformations.

  20. b b b b b b b b b b b b b Schwartz’ coordinate system Let A be a twisted polygon. The x -coordinates of A are the cross ratios x 2 k ( A ) = χ ( A k − 2 , A k − 1 , B , D ) x 2 k +1 ( A ) = χ ( A k +2 , A k +1 , C , D ) for B , C , D as below. A k +2 A k +1 C A k D A k − 2 A k − 1 B

  21. Proposition (Schwartz) The map ( x 1 , . . . , x 2 n ) : P n → R 2 n restricts to a bijection between dense open subsets of the domain and range. The same holds with P n replaced by P ∗ n Proposition (Schwartz) Let A be a twisted n-gon indexed by 1 2 + Z . Let x j = x j ( A ) . Then  1 − x j − 3 x j − 2  , x j − 1 j even   1 − x j +1 x j +2 x j ( T ( A )) = 1 − x j +3 x j +2  x j +1 , j odd   1 − x j − 1 x j − 2 Alternately, if A is indexed by Z then  1 − x j +3 x j +2  , x j +1 j even   1 − x j − 1 x j − 2 x j ( T ( A )) = 1 − x j − 3 x j − 2  x j − 1 , j odd   1 − x j +1 x j +2

  22. b b b b b b b b b b b b b b b b b b b The y -parameters The y -parameters of a twisted polygon A are the cross ratios y 2 k ( A ) = − ( χ ( A k − 1 , B , C , A k +1 )) − 1 y 2 k +1 ( A ) = − χ ( D , A k , A k +1 , E ) for B , C , D , E as below. A k +3 A k +2 A k +2 A k +1 E C A k +1 B A k A k A k − 2 A k − 1 D A k − 2 A k − 1

  23. Properties of y -parameters The y -parameters y j = y j ( A ) of a twisted n -gon A are related to its x -coordinates via: y 2 k = − ( x 2 k x 2 k +1 ) − 1 y 2 k +1 = − x 2 k +1 x 2 k +2 It follows that y 1 y 2 · · · y 2 n = 1. Proposition A twisted n-gon A can be reconstructed up to projective equivalence from y 1 , . . . , y 2 n together with additional quantities O n = x 1 x 3 · · · x 2 n − 1 and E n = x 2 x 4 · · · x 2 n .

  24. Properties of y -parameters The y -parameters y j = y j ( A ) of a twisted n -gon A are related to its x -coordinates via: y 2 k = − ( x 2 k x 2 k +1 ) − 1 y 2 k +1 = − x 2 k +1 x 2 k +2 It follows that y 1 y 2 · · · y 2 n = 1. Proposition A twisted n-gon A can be reconstructed up to projective equivalence from y 1 , . . . , y 2 n together with additional quantities O n = x 1 x 3 · · · x 2 n − 1 and E n = x 2 x 4 · · · x 2 n . Lemma (Schwartz) The quantities O n and E n are interchanged by the pentagram map, i.e. O n ( T ( A )) = E n ( A ) and E n ( T ( A )) = O n ( A ) .

  25. A formula for T Proposition Let A be a twisted n-gon indexed by 1 2 + Z . Let y j = y j ( A ) . Then  (1 + y j − 1 )(1 + y j +1 ) (1 + y j − 3 )(1 + y j +3 ) ,  y j − 3 y j y j +3 j even def y ′ = y j ( T ( A )) = j  y − 1 , j odd j If A is indexed by Z then  y − 1 , j even  j def y ′′ = y j ( T ( A )) = (1 + y j − 1 )(1 + y j +1 ) j y j − 3 y j y j +3 (1 + y j − 3 )(1 + y j +3 ) , j odd 

  26. A recursive formula for T k Let α 1 : ( y 1 , . . . , y 2 n ) �→ ( y ′ 1 , . . . , y ′ 2 n ) and α 2 : ( y 1 , . . . , y 2 n ) �→ ( y ′′ 1 , . . . , y ′′ 2 n ) be the rational maps defined on the previous slide. If A ∈ P n then it follows that the y -parameters of T k ( A ) can be expressed in terms of y 1 , . . . , y 2 n by the rational map . . . ◦ α 2 ◦ α 1 ◦ α 2 . � �� � k

  27. Y -patterns [Fomin, Zelevinsky] A Y -seed is a pair ( y , Q ) where y = ( y 1 , . . . , y n ) is a collection of rational functions and Q is a quiver, i.e. a directed graph on vertex set { 1 , 2 , . . . , n } without oriented 2-cycles. Given a Y -seed ( y , Q ) and some k ∈ { 1 , . . . , n } , the mutation µ k in direction k results in a new Y -seed µ k ( y , Q ) = ( y ′ , Q ′ ), where

  28. Y -patterns [Fomin, Zelevinsky] A Y -seed is a pair ( y , Q ) where y = ( y 1 , . . . , y n ) is a collection of rational functions and Q is a quiver, i.e. a directed graph on vertex set { 1 , 2 , . . . , n } without oriented 2-cycles. Given a Y -seed ( y , Q ) and some k ∈ { 1 , . . . , n } , the mutation µ k in direction k results in a new Y -seed µ k ( y , Q ) = ( y ′ , Q ′ ), where ◮ The vector y ′ is obtained from y via the following steps: 1. For each j → k in Q , multiply y j by 1 + y k . y k 2. For each k → j in Q multiply y j by 1+ y k . 3. Invert y k

  29. Y -patterns [Fomin, Zelevinsky] A Y -seed is a pair ( y , Q ) where y = ( y 1 , . . . , y n ) is a collection of rational functions and Q is a quiver, i.e. a directed graph on vertex set { 1 , 2 , . . . , n } without oriented 2-cycles. Given a Y -seed ( y , Q ) and some k ∈ { 1 , . . . , n } , the mutation µ k in direction k results in a new Y -seed µ k ( y , Q ) = ( y ′ , Q ′ ), where ◮ The vector y ′ is obtained from y via the following steps: 1. For each j → k in Q , multiply y j by 1 + y k . y k 2. For each k → j in Q multiply y j by 1+ y k . 3. Invert y k ◮ The quiver Q ′ is obtained from Q via the following steps: 1. For every length 2 path i → k → j , add an arc from i to j . 2. Reverse the orientation of all arcs incident to k . 3. Remove all oriented 2-cycles.

  30. An example of a Y -seed mutation 1+ y 2 , 1 y 2 ( y 1 , y 2 , y 3 , y 4 ) ( y 1 y 2 , y 3 (1 + y 2 ) , y 4 ) 4 3 4 3 µ 2 1 2 1 2

  31. A Y -pattern related to the pentagram map Let Q 0 be the quiver of rank 2 n with arrows 2 i → (2 i ± 3) and (2 i ± 1) → 2 i for all i = 1 , . . . , n (indices are taken modulo 2 n ). 4 6 2 5 3 7 1 8 16 9 15 11 13 10 14 12

  32. Theorem Let µ even and µ odd be the compound mutations µ even = µ 2 n ◦ . . . ◦ µ 4 ◦ µ 2 µ odd = µ 2 n − 1 ◦ . . . ◦ µ 3 ◦ µ 1 Let − Q 0 denote the quiver Q 0 with all its arrows reversed. Then µ even ( y , Q 0 ) = ( α 2 ( y ) , − Q 0 ) µ odd ( y , − Q 0 ) = ( α 1 ( y ) , Q 0 )

  33. Theorem Let µ even and µ odd be the compound mutations µ even = µ 2 n ◦ . . . ◦ µ 4 ◦ µ 2 µ odd = µ 2 n − 1 ◦ . . . ◦ µ 3 ◦ µ 1 Let − Q 0 denote the quiver Q 0 with all its arrows reversed. Then µ even ( y , Q 0 ) = ( α 2 ( y ) , − Q 0 ) µ odd ( y , − Q 0 ) = ( α 1 ( y ) , Q 0 ) Corollary Let A ∈ P n and let y 0 = ( y 1 , . . . , y 2 n ) be its y-parameters. Compute the y k = ( y 1 , k , . . . , y 2 n , k ) for k ≥ 1 by the sequence of mutations µ even µ odd µ even µ odd ( y 0 , Q 0 ) − − − → ( y 1 , − Q 0 ) − − → ( y 2 , Q 0 ) − − − → ( y 3 , − Q 0 ) − − → · · · Then, y j , k = y j ( T k ( A )) .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend