discrete laplace darboux sequences menelaus theorem and
play

Discrete Laplace-Darboux sequences, Menelaus theorem and the - PowerPoint PPT Presentation

Discrete Laplace-Darboux sequences, Menelaus theorem and the pentagram map by W.K. Schief Technische Universit at Berlin ARC Centre of Excellence for Mathematics and Statistics of Complex Systems, Australia 1. Discrete Laplace-Darboux


  1. Discrete Laplace-Darboux sequences, Menelaus’ theorem and the pentagram map by W.K. Schief Technische Universit¨ at Berlin ARC Centre of Excellence for Mathematics and Statistics of Complex Systems, Australia

  2. 1. Discrete Laplace-Darboux transformations (Doliwa 1997) Conjugate lattice: � 2 → ✁ 3 Φ : ✂ 2 ∼ � 2 = { ( n 1 , n 2 ) ∈ ✂ 2 : n 1 + n 2 odd } = with planar faces. Laplace-Darboux transformations: + Φ − Φ Φ L + : 2 1 ] �→ Φ + [Φ ¯ 2 , Φ 1 , Φ 2 , Φ ¯ Φ _ L − : 1 ] �→ Φ − 1 [Φ ¯ 2 , Φ 1 , Φ 2 , Φ ¯ Φ 1 Φ _ 2

  3. 2. Laplace-Darboux sequences Facts: (1) Φ + and Φ − likewise constitute conjugate lattices 4 3 1 2 3 4 2 1 (2) ” L + ◦ L − = L − ◦ L + = id ” (3) There exist invariants h ( n ) associated with the conjugate lattices Φ ( n ) = ( L + ) n (Φ) . These obey a gauge-invariant version of the discrete 2-dimensional Toda equation, i.e. a discretisation of (ln h ( n ) ) xy = − h ( n − 1) + 2 h ( n ) − h ( n +1)

  4. 3. The combinatorics of Laplace-Darboux sequences Combinatorial picture: Interpretation: Laplace-Darboux sequences generate three-dimensional lattices of face- centred cubic (fcc) combinatorics: � 3 → ✁ 3 Φ : � 3 = { ( n 1 , n 2 , n 3 ) ∈ ✂ 3 : n 1 + n 2 + n 3 odd } Φ Φ 3 _ 3 with the properties Φ 2 Φ 3 = L + (Φ ¯ 2 , Φ 1 , Φ 2 , Φ ¯ 1 ) Φ _ 1 Φ 3 = L − (Φ ¯ 1 Φ ¯ 2 , Φ 1 , Φ 2 , Φ ¯ 1 ) Φ _ 2

  5. 4. Laplace-Darboux lattices Observation: Laplace-Darboux lattices are ‘symmetric’ in n 1 , n 2 , n 3 , that is the two- dimensional sublattices Φ( n 1 = const , n 2 , n 3 ) and Φ( n 1 , n 2 = const , n 3 ) may also be regarded as conjugate lattices which are related by Laplace-Darboux transfor- mations! Interpretation: � 3 = set of vertices of a collection of octahedra (1) 3 _ 2 1 1 _ 2 _ 3

  6. ..... (2) Bipartite structure of octahedra 4 1 Φ 4 3 3 1 2 2 Definition. A Laplace-Darboux lattice is a map � 3 → ✁ 3 Φ : (1) which maps the four black faces and six vertices of any octahedron to a (planar) configuration of four lines and six points of intersection.

  7. 5. Theorem of Menelaus (100 AD; Euclid ?) Q 12 Theorem of Menelaus. Three points Q 12 , Q 23 , Q 31 Q 3 Q 31 on the (extended) edges of a triangle with vertices Q 1 , Q 2 , Q 3 are collinear if and only if Q 1 Q 23 Q 1 Q 12 Q 2 Q 23 Q 3 Q 31 = − 1 . Q 2 Q 12 Q 2 Q 23 Q 3 Q 31 Q 1 Conclusion: Laplace-Darboux lattices � 3 → ✁ 3 Φ : are characterized by the multi-ratio condition Φ ¯ 2 Φ 1 Φ ¯ 3 Φ 2 Φ ¯ 1 Φ 3 = − 1 Φ 1 Φ ¯ Φ 2 Φ ¯ Φ 3 Φ ¯ 3 1 2 which holds on each octahedron. Convention: The above figure is termed Menelaus configuration.

  8. 6. The dSKP equation Introduction of shape factors α, β, γ, δ according to Φ ¯ 2 − Φ 1 = α (Φ 1 − Φ ¯ 3 ) Φ ¯ 3 − Φ 2 = β (Φ 2 − Φ ¯ 1 ) Φ ¯ 1 − Φ 3 = γ (Φ 3 − Φ ¯ 2 ) Φ 1 − Φ 2 = δ (Φ 2 − Φ 3 ) αβγ = − 1 !! ⇔ Theorem. Laplace-Darboux lattices are governed by the coupled system αβγ = − 1 , α 23 β 13 γ 12 = − 1 , ( α 23 γ 12 − 1)( γ +1) = ( αγ − 1)( γ 12 +1) or, equivalently, by the discrete Schwarzian KP (dSKP) equation ( φ ¯ 2 − φ 1 )( φ ¯ 3 − φ 2 )( φ ¯ 1 − φ 3 ) 2 ) = − 1 ( φ 1 − φ ¯ 3 )( φ 2 − φ ¯ 1 )( φ 3 − φ ¯ � 3 → for a scalar function φ : ✁ which parametrises the shape factors according to α = φ ¯ 2 − φ 1 β = φ ¯ 3 − φ 2 γ = φ ¯ 1 − φ 3 , , . φ 1 − φ ¯ φ 2 − φ ¯ φ 3 − φ ¯ 3 1 2

  9. 7. Parametrisations Alternative parametrisation: α = − ψ ¯ β = − ψ ¯ γ = − ψ ¯ 3 1 2 , , , ψ ¯ ψ ¯ ψ ¯ 2 3 1 leading to the discrete modified KP (dmKP) equation ψ ¯ 2 − ψ ¯ + ψ ¯ 3 − ψ ¯ + ψ ¯ 1 − ψ ¯ 3 1 2 = 0 . ψ 1 ψ 2 ψ 3 Introduction of a τ -function according to ψ ¯ 2 − ψ ¯ τ ¯ 3 τ 1 ψ ¯ 3 − ψ ¯ τ ¯ 3 τ 2 ψ ¯ 1 − ψ ¯ τ ¯ 3 τ 3 1¯ 2¯ 1¯ 2¯ 1¯ 2¯ 3 1 2 = κ [1] , = κ [2] , = κ [3] , ψ 1 τ ¯ 2 τ ¯ ψ 2 τ ¯ 1 τ ¯ ψ 3 τ ¯ 1 τ ¯ 3 3 2 leading to the discrete Toda or Hirota-Miwa equation κ [1] τ ¯ 1 τ 1 + κ [2] τ ¯ 2 τ 2 + κ [3] τ ¯ 3 τ 3 = 0 .

  10. 8. Periodic reductions Motivation: Analogue of classical classification scheme of Laplace-Darboux sequences Periodic reduction of the dSKP equation: φ ( n 1 , n 2 , n 3 ) = φ ( n 1 , n 2 , n 3 + p ) , p even Classical analogue: Periodic 2-dim Toda lattice: (ln h ( n ) ) xy = − h ( n − 1) + 2 h ( n ) − h ( n +1) , h ( n + p ) = h ( n ) Consistent ‘quasi-periodicity’ assumption: Φ( n 1 , n 2 , n 3 ) = λ Φ( n 1 , n 2 , n 3 + p ) , ( λ = spectral parameter!) (i.e. periodicity in the setting of projective geometry.)

  11. 9. Period 2 2 1 3 In the simplest case p = 2 , we obtain for φ = φ | n 3 =0 , _ ¯ φ = φ | n 3 =1 : 3 _ _ 2 1 φ ¯ 3 = φ 3 2 − φ 1 )(¯ 1 − ¯ ( φ ¯ φ − φ 2 )( φ ¯ φ ) 2 ) = − 1 ( φ 1 − ¯ 1 )(¯ φ )( φ 2 − φ ¯ φ − φ ¯ (¯ 2 − ¯ φ 1 )( φ − ¯ φ 2 )(¯ φ ¯ φ ¯ 1 − φ ) 2 ) = − 1 (¯ φ 1 − φ )(¯ φ 2 − ¯ 1 )( φ − ¯ φ ¯ φ ¯ or, equivalently, (ˆ 2 − ˆ φ 1 )(ˆ φ − ˆ φ 2 )(ˆ 1 − ˆ φ ¯ φ ¯ φ ) 2 ) = − 1 (ˆ φ 1 − ˆ φ )(ˆ φ 2 − ˆ 1 )(ˆ φ − ˆ φ ¯ φ ¯ for { ˆ φ } = { φ } ∪ { ¯ φ } . This is a discrete Schwarzian Liouville equation (?!?) known in the theory of discrete holomorphic functions (Schramm circle patterns).

  12. 10. Period 2 + ‘tangential’ shifts discrete (Schwarzian) sinh-Gordon equation (Hirota)! discrete (Schwarzian) Korteweg-de Vries equation! discrete (Schwarzian) Boussinesq equation!

  13. 11. The continuum limit In general, consider the reduction T = T µ 1 T ν µ + ν = even τ ¯ 3 = Tτ 3 , 2 , Then, the discrete Toda equation assumes the form ( σ = τ 3 ) 2 τ 2 = τ ¯ 1 τ 1 − τ ¯ − ǫ [1] ǫ [2] σTσ − ǫ [1] ǫ [2] τT − 1 τ. σ ¯ 1 σ 1 − σ ¯ 2 σ 2 = Continuum limit: (ln τ ) xy = − σ 2 (ln σ ) xy = − τ 2 τ 2 , σ 2 so that ( σ 2 /τ 2 = exp ω ) ω xy = 4 sinh ω, Hence, continuum limit = sinh-Gordon equation for any T (cf. classical theory)!

  14. 12. The pentagram map Evolution of polygons on the plane (Schwartz 1992, Ovsienko, Schwartz & Tabachnikov 2009): ✂ → ✁ � 2 in fact ) ✁ 2 Polygon: C : ( Discrete time step: C �→ C ∗ C n+2 C n−2 * C n Cross ratios: x n = q ( D n , A n , C n − 2 , C n − 1 ) C n+1 C n−1 y n = q ( D n , B n , C n +2 , C n +1 ) A n B n C n 1 − x n − 1 y n − 1 Dynamical system: x ∗ n = x n 1 − x n +1 y n +1 D n 1 − x n +2 y n +2 y ∗ n = y n +1 1 − x n y n Results: (a) Integrable if the polygon is closed (modulo a projective transformation) (b) Boussinesq equation in the continuum limit

  15. 13. The Menelaus connection 2 _ _ _ _ 1 11 1 1 1 1 1 _ 2 Observation: The ‘pentagram lattice’ is nothing but a Laplace-Darboux sequence con- strained by Φ ¯ 3 = Φ 111 ⇔ Φ 3 = Φ ¯ 1¯ 1¯ 1 and therefore governed by ( φ ¯ 2 − φ 1 )( φ 111 − φ 2 )( φ ¯ 1 ) 1 − φ ¯ 1¯ 1¯ 2 ) = − 1 . ( φ 1 − φ 111 )( φ 2 − φ ¯ 1 )( φ ¯ 1 − φ ¯ 1¯ 1¯

  16. 14. The Schwarzian Boussinesq equation D Lemma: q ( A, B, D, C ) = − M ( E, G, C, F, H, B ) F H C Hence: B G E − ( φ ∗ − φ ∗ )( φ ∗ − φ ∗ )( φ ∗ − φ ∗ ) x n = ( φ ∗ − φ ∗ )( φ ∗ − φ ∗ )( φ ∗ − φ ∗ ) A − ( φ ∗ − φ ∗ )( φ ∗ − φ ∗ )( φ ∗ − φ ∗ ) y n = ( φ ∗ − φ ∗ )( φ ∗ − φ ∗ )( φ ∗ − φ ∗ ) Note: A is not a lattice point! and the evolution equations for x n and y n reduce to the above reduction of the dSKP equation! Continuum limit: φ 1 = φ + ǫφ u + O ( ǫ 2 ) , φ 2 = φ + ǫ 2 φ v + O ( ǫ 3 ) φ vv − φ uu v + 3 φ 2 4 { φ ; u } u φ u = 0 φ 2 u Schwarzian Boussinesq equation Note: The above discrete SBQ equation is non-standard!

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend