probabilistic watershed
play

Probabilistic Watershed Sampling all spanning forests for seeded - PowerPoint PPT Presentation

Probabilistic Watershed Sampling all spanning forests for seeded segmentation and semi-supervised learning Enrique Fita Sanmart n Fred A. Hamprecht Sebastian Damrich HCI/IWR at Heidelberg University Enrique Fita Sanmartin Probabilistic


  1. Probabilistic Watershed Sampling all spanning forests for seeded segmentation and semi-supervised learning Enrique Fita Sanmart´ ın Fred A. Hamprecht Sebastian Damrich HCI/IWR at Heidelberg University Enrique Fita Sanmartin Probabilistic Watershed 1 / 12

  2. What do we do? Enrique Fita Sanmartin Probabilistic Watershed 2 / 12

  3. We count forests! 1 2 3 Enrique Fita Sanmartin Probabilistic Watershed 3 / 12

  4. Framework Graph Enrique Fita Sanmartin Probabilistic Watershed 4 / 12

  5. Framework s 2 Graph Seeds (labeled nodes) s 1 Enrique Fita Sanmartin Probabilistic Watershed 4 / 12

  6. Framework 0.00 0.05 s 2 1.61 0.70 0.22 Graph Seeds (labeled nodes) 1.20 0.51 Edge-Costs ∼ affinity between nodes 0.92 0.10 0.43 s 1 0.16 0.36 Enrique Fita Sanmartin Probabilistic Watershed 4 / 12

  7. Framework 0.00 0.05 s 2 0.22 1.61 0.70 Graph Seeds (labeled nodes) 1.20 0.51 Edge-Costs ∼ affinity between nodes 0.92 Forest 0.10 0.43 s 1 0.16 0.36 Enrique Fita Sanmartin Probabilistic Watershed 4 / 12

  8. Forests s 2 s 2 0.00 0.05 s 2 0.22 1.61 0.70 s 1 s 1 1.20 0.51 s 2 s 2 0.92 0.10 0.43 s 1 s 1 s 1 0.16 0.36 s 2 s 2 Watershed forest / minimum cost Spanning Forest ( mSF ) s 1 s 1 Enrique Fita Sanmartin Probabilistic Watershed 5 / 12

  9. Counting Forests Enrique Fita Sanmartin Probabilistic Watershed 6 / 12

  10. Probabilistic Watershed exp ( − µ c ( f )) w ( f ) Pr( f ) = � = � − µ c ( f ′ ) � w ( f ′ ) s 2 � exp f ′∈F s 2 f ′∈F s 2 s 1 s 1 s 1 0.68 0.77 1 . 00 1 mSF 0.21 0 . 52 0.72 s 2 s 2 s 2 s 2 0 . 00 0.30 0.45 0 s 1 s 1 s 1 s 1 � w ( f ) F s 1 f ∈F s 1 � � Pr( f ) = w Probabilistic s 2 , q s 2 , q � → Pr( q ∼ s 2 ) := � = F s 1 . Watershed � � w w ( f ) s 2 f ∈F s 1 s 2 , q f ∈F s 1 s 2 Enrique Fita Sanmartin Probabilistic Watershed 7 / 12

  11. How do we count the forests? s 2 192 s 1 Matrix Tree Theorem [Kirchhoff, 1847] Let G = ( V , E , w ) an edge-weighted multigraph, w ( T ),the sum of the weights of the spanning trees of G , ✶ is a column vector of 1’s, L is the Laplacian matrix and L [ v ] is the Laplacian matrix after removing an abitrary row and column v , then 1 1 � | V | ✶✶ ⊤ � � � � = det( L [ v ] ) . w ( T ) := w ( t ) = w ( e ) = | V | det L + t ∈T t ∈T e ∈ E t Enrique Fita Sanmartin Probabilistic Watershed 8 / 12

  12. How do we count the forests? s 2 288 s 1 Modification Matrix Tree Theorem Let G = ( V , E , w ) be an undirected edge-weighted connected graph, r eff uv the effective resistance distance between u , v ∈ V arbitrary vertices and w ( F v u ) the sum of the weights of the 2-trees spanning forests separating u and v , then w ( F v u ) = w ( T ) r eff uv . Enrique Fita Sanmartin Probabilistic Watershed 8 / 12

  13. Probabilistic Watershed=Random Walker[Grady, 2006] = + Probabilistic Watershed Random Walker [Grady, 2006] Enrique Fita Sanmartin Probabilistic Watershed 9 / 12

  14. Power Watershed new interpretation Enrique Fita Sanmartin Probabilistic Watershed 10 / 12

  15. Summary exp ( − µ c ( f )) w ( f ) Pr( f ) = � = w ( f ′ ) � � − µ c ( f ′ ) � s 2 exp f ′∈F s 2 f ′∈F s 2 Probabilistic Watershed=Random s 1 s 1 Walker [Grady, 2006]. New interpretations of the Power s 1 Watershed [Couprie et al., 2011]. Technique to count forests. 0.68 0.77 1 . 00 1 mSF 0.21 0 . 52 0.72 s 2 s 2 s 2 s 2 0 . 00 0.30 0.45 0 s 1 s 1 s 1 s 1 Poster Room East Exhibition Hall B + C #81 10:45 AM – 12:45 PM Enrique Fita Sanmartin Probabilistic Watershed 11 / 12

  16. References Couprie, C., Grady, L., Najman, L., and Talbot, H. (2011). Power watershed: A unifying graph-based optimization framework. IEEE Transactions on Pattern Analysis and Machine Intelligence . Grady, L. (2006). Random walks for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence . Kirchhoff, G. (1847). ¨ Uber die Aufl¨ osung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Str¨ ome gef¨ uhrt wird. Annalen der Physik , 148:497–508. Enrique Fita Sanmartin Probabilistic Watershed 12 / 12

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend