polynomial approximation via de la vall ee poussin means
play

Polynomial approximation via de la Vall ee Poussin means Woula - PowerPoint PPT Presentation

Summer School on Applied Analysis 2011 TU Chemnitz, September 26-30, 2011 Polynomial approximation via de la Vall ee Poussin means Woula Themistoclakis CNR - National Research Council of Italy Institute for Computational Applications


  1. Summer School on Applied Analysis 2011 TU Chemnitz, September 26-30, 2011 Polynomial approximation via de la Vall´ ee Poussin means Woula Themistoclakis CNR - National Research Council of Italy Institute for Computational Applications “Mauro Picone”, Naples, Italy. Woula Themistoclakis, TU Chemnitz, September 26-30, 2011 1

  2. ◮ Lecture 1: De la Vall´ ee Poussin means • Approximation properties • Basic facts on polynomial approximation • Application to prove boundedness of some CSIO in Lipschitz type spaces ◮ Lecture 2: Discrete de la Vall´ ee Poussin means • Approximation properties • Comparison with Lagrange interpolation • Interpolating de la Vall´ ee Poussin polynomials ◮ Lecture 3: Applications of de la Vall´ ee Poussin type interpolation • Part 1: A numerical method for solving the generalized airfoil equation • Part 2: Construction of interpolating polynomial wavelets on [-1,1] Woula Themistoclakis, TU Chemnitz, September 26-30, 2011 2

  3. APPROXIMATION THEOREM: [ (1885) Karl Weierstrass ] For any f ∈ C [ − 1 , 1] and each ǫ > 0 , there exists an algebraic polynomial Q such that � f − Q � ∞ < ǫ � ( f − Q ) u � p < ǫ, 1 ≤ p ≤ ∞ Weighted extensions: where u ( x ) := v α,β ( x ) = (1 − x ) α (1 + x ) β ∈ L p [ − 1 , 1] is a Jacobi weight and if 1 ≤ p < ∞ , we assume f ∈ L p u with L p u := { f : � fu � p < ∞} while in the case p = ∞ , we suppose f ∈ C 0 u , with C 0 u := { f ∈ C ( − 1 , 1) : lim | x |→ 1 f ( x ) u ( x ) = 0 } , if α, β > 0 , C 0 u := { f ∈ C ( − 1 , 1] : lim x →− 1 f ( x ) u ( x ) = 0 } , if α = 0 < β C 0 u := { f ∈ C [ − 1 , 1) : lim x → +1 f ( x ) u ( x ) = 0 } , if α > 0 = β Woula Themistoclakis, TU Chemnitz, September 26-30, 2011 3

  4. n � S n ( w, f, x ) := c k ( w, f ) p k ( w, x ) Fourier partial sums : k =0 where w ( x ) := v α,β ( x ) = (1 − x ) α (1 + x ) β , α, β > − 1 , is a Jacobi weight, { p k ( w, x ) } k denotes the corresponding system of orthonormal Jacobi � 1 polynomials and c k ( w, f ) := − 1 p k ( w, y ) f ( y ) w ( y ) dy . ◮ Invariance: S n ( w, P ) = P, P ∈ P n := { P : deg( P ) ≤ n } . ◮ Boundedness in L p u : Under some conditions on u, w , we have 1 < p < ∞ = ⇒ sup n � S n ( w ) � L p u < ∞ , u → L p ◮ Critical cases: p = 1 , ∞ = ⇒ sup n � S n ( w ) � L p u = + ∞ , ∀ u, w u → L p Woula Themistoclakis, TU Chemnitz, September 26-30, 2011 4

  5. m � 1 V m n ( w, f, x ) := S k ( w, f, x ) De la Vall´ ee Poussin means : m − n + 1 k = n ◮ Quasi-projection: V m n ( w, P ) = P whenever P ∈ P n , but n < m . � 1 V m H m In integral form: n ( w, f, x ) := n ( w, x, y ) f ( y ) w ( y ) dy − 1  m �  1  H m  n ( w, x, y ) := K r ( w, x, y ) de la Vall´ ee Poussin kernel   m − n +1 r = n where r �    K r ( w, x, y ) := p j ( w, x ) p j ( w, y ) Darboux kernel   j =0 Woula Themistoclakis, TU Chemnitz, September 26-30, 2011 5

  6. Theorem [ M.R.Capobianco, T. ] For all Jacobi weights w = v α,β , for any pair of sufficiently large integers n ∼ m ∼ m − n (i.e. n < m < C 1 n , and C 2 m < m − n < m with C 1 , C 2 > 0 independent of n, m ) and for each � � c c x, y ∈ − 1 + m 2 , 1 − ( c > 0 fixed), we have m 2 4 , − β 4 , − β n ( w, x, y ) | ≤ Cmv − α 2 − 1 2 − 1 4 ( x ) v − α 2 − 1 2 − 1 | H m 4 ( y ) , (1) If in addition x � = y , then we have 4 , − β 4 , − β Cv − α 2 − 1 2 − 1 4 ( x ) v − α 2 − 1 2 − 1 4 ( y ) | H m (2) n ( w, x, y ) | ≤ E ± ( x, y ) , m | x − y | where, in the case | x − y | ≥ a > 0 , E ± ( x, y ) ≤ C , and generally E ± ( x, y ) := ( √ 1 ± x + √ 1 ± y ) 2 √ 1 ± x + √ 1 ± y + 1 − y 2 . √ 1 − x 2 � | x − y | m In all the previous estimates, C is a positive constant independent of n, x, y . Woula Themistoclakis, TU Chemnitz, September 26-30, 2011 6

  7. Theorem [ M.R.Capobianco, T. ] Let 1 ≤ p ≤ ∞ and consider the map u , where n ∼ m ∼ m − n and w = v α,β , u = v γ,δ satisfy V m n ( w ) : L p u → L p the inequalities α 2 − 1 < γ + 1 α 2 + 5 0 < γ + 1 p < 4 , and p < α + 1 , 4 β 2 − 1 < δ + 1 β 2 + 5 0 < δ + 1 p < 4 , and p < β + 1 , 4 � � � � � γ − δ − α − β � � � ≤ 1 . Then for all f ∈ L p Moreover assume u , we have 2 � ( V m n ( w, f ) u � p ≤ C � fu � p , C � = C ( n, m, f ) . (3) OPEN PROBLEM: State necessary and sufficient conditions for (3) Woula Themistoclakis, TU Chemnitz, September 26-30, 2011 7

  8. Theorem [ G.Mastroianni, T. ] Let 1 ≤ p ≤ ∞ , and w = v α,β , u = v γ,δ be such that the following bounds α 2 + 1 < γ + 1 α 2 + 5 0 < γ + 1 4 − ν p < 4 − ν, and p < α + 1 , β 2 + 1 < δ + 1 β 2 + 5 0 < δ + 1 4 − ν p < 4 − ν, and p < β + 1 , are satisfied for some ν ∈ [0 , 1 / 2] . Then for all positive integers n ∼ m ∼ m − n and any f ∈ L p u , we have � ( V m n ( w, f ) u � p ≤ C � fu � p , C � = C ( n, m, f ) . � p = ∞ and u = 1 ( if α, β < 1 Limiting cases also possible: 2 ) p = 1 and u = w Woula Themistoclakis, TU Chemnitz, September 26-30, 2011 8

  9. Comparison with Fourier sums � 1 S n ( w, f, x ) = − 1 K n ( w, x, y ) f ( y ) w ( y ) dy, � 1 V m − 1 H m n ( w, f, x ) = n ( w, x, y ) f ( y ) w ( y ) dy, m > n � S n ( w, P ) = P, ∀ P ∈ P n (projection on P n ) ◮ Invariance: V m n ( w, P ) = P, ∀ P ∈ P n (quasi-projection on P m ) ◮ Boundedness in C 0 u and L 1 u : Let n ∼ m ∼ m − n . Then � sup n � S n ( w ) � C 0 u = sup n � S n ( w ) � L 1 u = ∞ for any u, w u → C 0 u → L 1 sup n � V m u = sup n � V m n ( w ) � C 0 n ( w ) � L 1 u < ∞ for suitable u, w u → C 0 u → L 1 Woula Themistoclakis, TU Chemnitz, September 26-30, 2011 9

  10. ◮ Boundedness in L p u : Let n ∼ m ∼ m − n and 1 < p < ∞ . Then � sup n � S n ( w ) � L p u < ∞ for suitable (more restricted) u u → L p sup n � V m n ( w ) � L p u < ∞ for suitable u u → L p In particular if w = v α,β and u = v γ,δ satisfy the technical requirements 0 < γ + 1 p < α + 1 and 0 < δ + 1 p < β + 1 , then we have  α 2 + 1 < γ + 1 α 2 + 3  p < 4 ,   4 sup n � S n ( w ) � L p u < ∞ ⇔ u → L p β 2 + 1 < δ + 1 β 2 + 3    p < 4 , 4  α 2 + 1 4 − ν < γ + 1 p < α 2 + 5  4 − ν,   0 ≤ ν ≤ 1 n � V m sup n ( w ) � L p u < ∞ ⇐ u → L p  β 2 + 1 4 − ν < δ + 1 p < β 2 + 5 2   4 − ν, Woula Themistoclakis, TU Chemnitz, September 26-30, 2011 10

  11. ERROR OF BEST POLYNOMIAL APPROXIMATION IN L p u E n ( f ) u,p := deg ( P n ) ≤ n � ( f − P n ) u � p inf 1 ≤ p ≤ ∞ , ◮ Invariance on P n implies f − V m n ( w, f ) = ( f − P n ) − V m n ( w, f − P n ) , i.e. � [ f − V m n ( w, f )] u � p ≤ (1 + � V m n ( w ) � L p u ) E n ( f ) u,p u → L p ◮ Boundedness in L p u is equivalent to: E m ( f ) u,p ≤ � [ f − V m n ( w, f )] u � p ≤ CE n ( f ) u,p i.e. V m n ( w, f ) is a near best polynomial approximating f ∈ L p u . Woula Themistoclakis, TU Chemnitz, September 26-30, 2011 11

  12. Ditzian–Totik moduli of smoothness: Non weighted case: ω r � ∆ r ϕ ( f, t ) p := sup hϕ f � L p [ − 1 , 1] 0 <h ≤ t Ω r � (∆ r ϕ ( f, t ) u,p := sup hϕ f ) u � L p [ − 1+4 r 2 h 2 , 1 − 4 r 2 h 2 ] ← ( main–part) 0 <h ≤ t ω r Ω r ϕ ( f, t ) u,p := ϕ ( f, t ) u,p + deg ( P ) <r � ( f − P ) u � L p [ − 1 , − 1+4 r 2 t 2 ] inf + deg ( P ) <r � ( f − P ) u � L p [1 − 4 r 2 t 2 , 1] inf √ 1 − x 2 and ∆ r where we set ϕ ( x ) := hϕ f is the central r th difference of f of variable step size hϕ ( x ) , i.e. � � � � x + h x − h ∆ r hϕ f = ∆∆ r − 1 ∆ hϕ f ( x ) := f 2 ϕ ( x ) − f 2 ϕ ( x ) , hϕ Woula Themistoclakis, TU Chemnitz, September 26-30, 2011 12

  13. Some basic properties: (worth for Ω r ϕ ( f, t ) u,p too) lim t → 0 ω r ∀ f ∈ L p ( f ∈ C 0 ( i ) ϕ ( f, t ) u,p = 0 , u when p = ∞ ) u ⇒ ω r ϕ ( f, t 1 ) u,p ≤ ω r ( ii ) t 1 ≤ t 2 = ϕ ( f, t 2 ) u,p ω r ϕ ( f, t ) u,p ≤ Cω r − 1 ( iii ) ( f, t ) u,p ϕ ω r ϕ ( f, λt ) u,p ≤ Cλ r ω r ( iv ) ϕ ( f, t ) u,p , ( λ > 1) ω r ϕ ( f, t ) u,p ≤ C tω r − 1 ( f ′ , t ) uϕ,p , ( f ∈ AC loc : � f ′ uϕ � p < ∞ ) ( v ) ϕ ω r K r ϕ ( f, t r ) u,p ϕ ( f, t ) u,p ∼ Equivalent K –functionals: where: ˜ Ω r K r ϕ ( f, t r ) u,p ϕ ( f, t ) u,p ∼  {� ( f − g ) u � p + t � g ( r ) ϕ r u � p } K r  ϕ ( f, t ) u,p := inf    g ( r − 1) ∈ AC loc ˜ {� ( f − g ) u � L p ( I r,h ) + h � g ( r ) ϕ r u � L p ( I r,h ) } K r ϕ ( f, t ) u,p := sup inf   g ( r − 1) ∈ AC loc 0 <h ≤ t   I r,h := [ − 1 + 4 r 2 h 2 , 1 − 4 r 2 h 2 ] Woula Themistoclakis, TU Chemnitz, September 26-30, 2011 13

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend