polynomial approximation via de la vall ee poussin means
play

Polynomial approximation via de la Vall ee Poussin means { - PowerPoint PPT Presentation

Summer School on Applied Analysis 2011 TU Chemnitz, September 26-30, 2011 Polynomial approximation via de la Vall ee Poussin means { Generalized airfoil equation (Part 1) Lecture 3: Polynomial wavelets (Part 2) Woula Themistoclakis


  1. Summer School on Applied Analysis 2011 TU Chemnitz, September 26-30, 2011 Polynomial approximation via de la Vall´ ee Poussin means { • Generalized airfoil equation (Part 1) Lecture 3: • Polynomial wavelets (Part 2) Woula Themistoclakis CNR - National Research Council of Italy Institute for Computational Applications “Mauro Picone”, Naples, Italy. Woula Themistoclakis - Chemnitz, September 26-30, 2011 1

  2. GENERALIZED AIRFOIL EQUATION √ 1 − y √ 1 − y ∫ 1 ∫ 1 − 1 f ( y ) 1 + ydy + ν log | x − y | f ( y ) 1 + ydy = g ( x ) , | x | < 1 π y − x π − 1 − 1 where the first integral is in the Cauchy principal value sense, ν is a complex number, g is a known function and f is the sought solution. Df ( x )+ νKf ( x ) = g ( x ) , | x | < 1 ← Operator form ∫ 1 ◮ Cauchy singular integral operator: Df ( x ) = − 1 f ( y ) 1 2 , − 1 y − xv 2 ( y ) dy π − 1 ∫ 1 Kf ( x ) = 1 1 2 , − 1 ◮ Perturbation operator: log | x − y | f ( y ) v 2 ( y ) dy π − 1 Woula Themistoclakis - Chemnitz, September 26-30, 2011 2

  3. For u ( x ) = (1 − x ) γ (1 + x ) δ with γ, δ ≥ 0 , we consider ◮ Weighted spaces of locally continuous functions: { } lim x → 1 ( fu )( x ) = 0 if γ > 0 and C 0 f ∈ C 0 u := loc : lim x →− 1 ( fu )( x ) = 0 if δ > 0 equipped with the norm ∥ f ∥ C 0 u := ∥ fu ∥ ∞ . Z r ( u ) := { f ∈ C 0 ◮ H¨ older–Zygmund subspaces: u : ∥ f ∥ Z r ( u ) < ∞} equipped with the norm ω k ϕ ( f, t ) u, ∞ ( k + 1) r E k ( f ) u, ∞ ∥ f ∥ Z r ( u ) := ∥ fu ∥ ∞ + sup ∼ ∥ fu ∥ ∞ + sup t r t> 0 k> 0 Woula Themistoclakis - Chemnitz, September 26-30, 2011 3

  4. ∫ 1 ◮ Mapping properties of Df ( x ) = − 1 f ( y ) 1 2 , − 1 y − x v 2 ( y ) . π − 1 2 , 0 ) → Z r ( v 0 , 1 1 TH. 1: For all r > 0 , the map D : Z r ( v 2 ) is linear, bounded, ∫ 1 Df ( x ) = 1 f ( y ) y − xv − 1 2 , 1 with bounded inverse given by � 2 ( y ) dy. Moreover π − 1 ω k ω k ϕ ( Df, t ) ϕ ( f, t ) v 0 , 1 1 2 , 0 , ∞ 2 , ∞ v sup ∼ sup , k > r > 0 t r t r t> 0 t> 0 Note: More generally, in the first lecture we studied ∫ 1 D α, − α f ( x ) := cos παf ( x ) v α, − α ( x ) − sin πα f ( y ) y − xv α, − α ( y ) dy, π − 1 establishing TH.1 for the map D α, − α : Z r ( v α, 0 ) → Z r ( v 0 ,α ) . Woula Themistoclakis - Chemnitz, September 26-30, 2011 4

  5. ∫ 1 ◮ Mapping properties of Kf ( x ) = 1 1 2 , − 1 log | x − y | f ( y ) v 2 ( y ) dy π − 1 1 2 , 0 ) → Z r +1 is bounded and TH. 2: For all r > 0 , the map K : Z r ( v ω k ϕ ( f, t ) ω k +1 ( Kf, t ) ∞ 1 2 , 0 , ∞ 1 ϕ v 2 , 0 ∥ ∞ , ∥ Kf ∥ ∞ ≤ C ∥ fv sup ≤ C sup t r +1 t r t> 0 t> 0 1 2 , 0 ) . hold for all k > r , C > 0 being independent of f ∈ Z r ( v Note that: • The identity ( Kf ) ′ = Df and TH.1 can be used in order to prove the second inequality of TH.2. • Since Z r +1 is compactly embedded into Z s for all s < r + 1 , by TH.2 1 2 , 0 ) → Z r is compact. we also get that the map K : Z r ( v Woula Themistoclakis - Chemnitz, September 26-30, 2011 5

  6. ◮ Solvability of ( D + νK ) f = g : By the previous theorems we can apply the Fredholm alternative theorem to the regularized equation ( I + ν � DK ) f = � Dg , obtaining the following Corollary: Assume ker { D + νK } = { 0 } . Then for any g ∈ Z r ( v 0 , 1 2 ) the 1 2 , 0 ) . generalized airfoil equation has a unique and stable solution f ∈ Z r ( v Note: ( D.Berthold, W.Hoppe, B.Silbermann ) ker { D + νK } = { 0 } , ∀ ν ∈ R Polynomial projection methods attempt to find a polynomial ◮ approximation of f , namely f n , solving the approximate equation ( D + ν P n K ) f n = P n g , where P n is the polynomial projection defining the method. n →∞ ∥ K − P n K ∥ lim 2 ) = 0 Condition to require: 1 2 , 0 ) → Z r ( v 0 , 1 Z r ( v Woula Themistoclakis - Chemnitz, September 26-30, 2011 6

  7. L n : f → L n ( v − 1 2 , 1 2 , f ) ∈ P n − 1 Lagrange Projections: V n,m ( v − 1 2 , 1 2 , f ) ∈ S n,m ( v − 1 2 , 1 V n,m : f → ˜ ˜ 2 ) de la V.P. Both these projections satisfy the required condition, since we have ≤ C n − 1 log n ∥ K − L n K ∥ 1 2 , 0 ) → Z r ( v 0 , 1 Z r ( v 2 ) ∥ K − ˜ ≤ C n − 1 , V n,m K ∥ m = θn, 0 < θ < 1 1 2 , 0 ) → Z r ( v 0 , 1 Z r ( v 2 ) 1 2 , 0 ) → Z r ( v 0 , 1 TH. 3: If D + νK : Z r ( v 2 ) has bounded inverse, then the 2 , 0 ) → Z r ( v 0 , 1 1 same holds for D + ν P n K : Z r ( v 2 ) , where either P n = L n or P n = ˜ V n,m with m = θn , 0 < θ < 1 . Moreover: sup n ∥ ( D + ν P n K ) − 1 ∥ < ∞ , lim n κ ( D + ν P n K ) = κ ( D + νK ) where κ ( A ) := ∥ A ∥∥ A − 1 ∥ . Woula Themistoclakis - Chemnitz, September 26-30, 2011 7

  8. g ∈ Z r ( v 0 , 1 Airfoil equation: ( D + νK ) f = g, 2 ) P n = L n or P n = ˜ Approximate equation: ( D + ν P n K ) f n = P n g, V n,m ◮ Solvability of the approximate equation: There exists a unique stable There exists a unique stable solution f of the airfoil equation = ⇒ solution f n of the approximate equation ◮ Error estimates depend on P n and can be deduced from f − f n = ( I + ν � D P n K ) − 1 [ � DDf − � D P n Df ] taking into account that { V n,m ( v − 1 2 , 1 if P n = ˜ 2 , 0 ∥ ∞ ≤ C 1 2 ) , m = θn 1 ∥ [ � DF − � D P n F ] v n r ∥ F ∥ Z r ( v 0 , 1 if P n = L n ( v − 1 2 , 1 log n 2 ) 2 ) Woula Themistoclakis - Chemnitz, September 26-30, 2011 8

  9. Theorem 4: The solution f n of the approximate equation corresponding to P n = L n or P n = ˜ V n,m with m = θn , 0 < θ < 1 , satisfies the following error estimates, where C > 0 denotes a constant independent of f and n .   ∥ g ∥  Z r ( v 0 , 1  2 )   ∥ f − f n ∥ 2 , 0 ) ≤ C log n, 0 < s ≤ r  1 n r − s Z s ( v ◮ Lagrange case :   ∥ g ∥  Z r ( v 0 , 1  1 2 )  2 , 0 ∥ ∞ ≤ C  ∥ ( f − f n ) v log n, n r   ∥ g ∥  Z r ( v 0 , 1  2 )   ∥ f − f n ∥ 2 , 0 ) ≤ C , 0 < s ≤ r  1 n r − s Z s ( v ◮ De la V.P. case :   ∥ g ∥  Z r ( v 0 , 1   1 2 ) 2 , 0 ∥ ∞ ≤ C  ∥ ( f − f n ) v n r Woula Themistoclakis - Chemnitz, September 26-30, 2011 9

  10. ∫ 1 ∫ 1 Df ( x ) = − 1 f ( y ) Df ( x ) = 1 f ( y ) 1 2 , − 1 y − xv − 1 2 , 1 � y − xv 2 ( y ) dy, 2 ( y ) dy π π − 1 − 1 1 2 , − 1 Theorem 5 The operator D maps the space S n,m ( v 2 ) into the space S n,m ( v − 1 2 , 1 2 ) . This correspondence is bijective and its inverse is D − 1 = � D : S n,m ( v − 1 2 , 1 1 2 , − 1 2 ) → S n,m ( v 2 ) . 2 , − 1 1 2 ) = p k ( v − 1 2 , 1 1 2 , − 1 2 ) = q k ( v − 1 2 , 1 Proof. Dp k ( v 2 ) = ⇒ Dq k ( v 2 ) . ✷ V n,m ( v − 1 2 , 1 V n,m ( v − 1 2 , 1 Df n + ν ˜ 2 , Kf n ) = ˜ Notes on : 2 , g ) 1 2 , − 1 ◮ Its solution f n ∈ S n,m ( v 2 ) . V n,m ( v − 1 2 , 1 V n,m ( v − 1 2 , 1 ˜ 2 , Df n + νKf n ) = ˜ ◮ It is equivalent to: 2 , g ) Woula Themistoclakis - Chemnitz, September 26-30, 2011 10

  11. COMPUTATION OF THE APPROXIMATE SOLUTIONS ∫ 1 w := v − 1 2 , 1 Notations: and < f, g > w := − 1 f ( x ) g ( x ) w ( x ) dx 2 Df n + ν ˜ V n,m ( w, Kf n ) = ˜ ◮ De la Vall´ ee Poussin case: V n,m ( w, g ) We compute f n = ∑ n − 1 k =0 a k q k ( w − 1 ) ∈ S n,m ( w − 1 ) by requiring that < Df n + ν ˜ = < ˜ V n,m ( w, Kf n ) , q h ( w ) > w V n,m ( w, g ) , q h ( w ) > w < q h ( w ) , q h ( w ) > w < q h ( w ) , q h ( w ) > w h = 0 , . . . , n − 1 ◮ Lagrange case: Df n + νL n ( w, f n ) = L n ( w, g ) We compute f n = ∑ n − 1 k =0 b k p k ( w − 1 ) ∈ P n − 1 by requiring that < Df n + νL n ( w, Kf n ) , p h ( w ) > w = < L n ( w, g ) , p h ( w ) > w h = 0 , . . . , n − 1 Woula Themistoclakis - Chemnitz, September 26-30, 2011 11

  12. Linear system by de la V.P. projection method For h = 0 , . . . , n − 1 , set w := v − 1 2 , 1 2 , we have < Df n + ν ˜ = < ˜ V n,m ( w, Kf n ) , q h ( w ) > w V n,m ( w, g ) , q h ( w ) > w < q h ( w ) , q h ( w ) > w < q h ( w ) , q h ( w ) > w which, by f n = ∑ n − 1 k =0 a k q k ( w − 1 ) and Dq k ( w − 1 ) = q k ( w ) , gives [ ] n − 1 ∑ δ h,k + ν< ˜ = < ˜ V n,m ( w, Kq k ( w − 1 )) , q h ( w ) > w V n,m ( w, g ) , q h ( w ) > w a k < q h ( w ) , q h ( w ) > w < q h ( w ) , q h ( w ) > w k =0 [∑ n ] V n,m ( w, f ) = ∑ n − 1 But ˜ j =1 λ n,j p h ( w, x n,j ) f ( x n,j ) q h ( w ) , hence h =0   n − 1 n n ∑ ∑ ∑  δ h,k + ν λ n,j Kq k ( w − 1 )( x n,j ) p h ( w, x n,j )  = a k λ n,j g ( x n,j ) p h ( w, x n,j ) k =0 j =1 j =1 Woula Themistoclakis - Chemnitz, September 26-30, 2011 12

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend