interpolation polynomial
play

Interpolation polynomial * Means finding an approximate value to a - PowerPoint PPT Presentation

Interpolation polynomial * Means finding an approximate value to a function as a polynomial of degree n using n+1 points. Methods of solution 1- Quadratic Lagrange x x x x 1 2 0 f x y y y 0 1 2 P


  1. Interpolation polynomial * Means finding an approximate value to a function as a polynomial of degree n using n+1 points. Methods of solution

  2. 1- Quadratic Lagrange x x x x 1 2 0   f x y y y 0 1 2      P x L y L y L y 2 0 0 1 1 2 2      x x x x  1 2 L    0       x x x x   x x x x 0 1 0 2  0 1 L           2   x x x x x x x x  0 2 2 0 2 1 L     1   x x x x 1 0 1 2

  3. Example * Interpolate the following data: 1 2 3 x f(x) 1.2 4.5 3.8             2 3 x x 1 x x x x     2  1 2 2 x 5 x 6 L         0   1 2 1 3 x x x x 0 1 0 2              x x x x x 1 x 3       0 2 2 L x 4 x 3        1     x x x x 2 1 2 3 1 0 1 2              x 1 x 2 1 x x x x      2 0 1 2 x 3 x 2 L          2   x x x x 3 1 3 2 2 0 2 1         P x L y L y L y 1.2 L 4.5 L 3.8 L 2 0 0 1 1 2 2 0 1 2     2 2 x 9.3 x 6.1

  4. Example * Given that: 9 9.5 11 x f(x) 2.19 2.25 2.39        approximate . If , evaluate f x Ln x P 2 9.2 the error.           x 9.5 x 11 x x x x      1 2 2 L x 20.5 x 104.5         0   9 9.5 9 11 x x x x 0 1 0 2               x x x x x 9 x 11 4      0 2 2 L x 20 x 99        1     x x x x 9.5 9 9.5 11 3 1 0 1 2              9 9.5 x x 1 x x x x     2  0 1 3 x 18.5 x 85.5 L          2   11 9 11 9.5 x x x x 2 0 2 1

  5.      P x L y L y L y 2 0 0 1 1 2 2    2.19 L 2.25 L 2.39 L 0 1 2    2 1.58 29.11 136.2 x x  P 2 (9.2) 2.1192  Exact value Ln (9.2)  2.2192 Error = Exact value - Approximate value     f (9.2) P 9.2 2   2.2192-2.1192 0.1

  6. 2- Newton divided difference x x x x x  1 2 0 n 1 f x ( ) y y y y  0 1 2 n 1                P x a a x x a x x x x n 0 1 0 2 0 1           + a x x x x x x  0 1 1 n n  y y   1 0 a y 0 , a , 0 1  x x 1 0

  7. Example * Given that: 9 9.5 11 x f(x) 2.19 2.25 2.39        approximate . If , evaluate f x Ln x P 2 9.2 the error. x y First Stage Second Stage a a 0 1 9 2.19  a 2.25 2.19  2 0.12   9.5 9 0.093 0.12   0.0135 9.5 2.25  11 9  2.39 2.25  0.093  11 2.39 11 9.5

  8.               P x a a x x a x x x x 2 0 1 0 2 0 1            2.19 0.12 x 9 0.0135 x 9 x 9.5    2 0.0135 +0.36975 0.04425 x x  P 2 (9.2) 2.21481  Exact value Ln (9.2)  2.2192 Error = Exact value - Approximate value     f (9.2) P 9.2 2   2.2192-2.21481 0.00439

  9. Example * Given that: 0 1 2 4 x f(x) 1 3 6 8   approximate . P 3 1.8 x y First Stage Second Stage Third Stage a a 0  1 3 1 a 0 1  2 2   3 2 1 0 1  a 2 1  3 1 3   2 0 2  6 3 7  3 2   3   2 1 4 0 24 2 6   1 3 2   8 6  1  4 1 3  4 8 4 2

  10.               P x a a x x a x x x x 3 0 1 0 2 0 1         + a x x x x x x 3 0 1 2 1 7                    1 2 x 0 x 0 x 1 x 0 x 1 x 2 2 24 7      3 2 x 1.375 x 0.916667 x 1 24  P 3 (1.8) 5.404

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend