piperazine pz and methyldiethanolamine mdea
play

PIPERAZINE (PZ) AND METHYLDIETHANOLAMINE (MDEA) INTERRELATIONSHIPS IN - PowerPoint PPT Presentation

PIPERAZINE (PZ) AND METHYLDIETHANOLAMINE (MDEA) INTERRELATIONSHIPS IN CO 2 ABSORPTION BY AQUEOUS AMINE MIXTURES Camilla Costa 1 , Renzo Di Felice 2 , Paolo Moretti 1 , Maddalena Oliva 1 , Rouzbeh Ramezani 2 1 Dipartimento di Chimica e Chimica


  1. PIPERAZINE (PZ) AND METHYLDIETHANOLAMINE (MDEA) INTERRELATIONSHIPS IN CO 2 ABSORPTION BY AQUEOUS AMINE MIXTURES Camilla Costa 1 , Renzo Di Felice 2 , Paolo Moretti 1 , Maddalena Oliva 1 , Rouzbeh Ramezani 2 1 Dipartimento di Chimica e Chimica Industriale, Università di Genova, Genova, Italy 2 Dipartimento di Ingegneria Civile Chimica ed Ambientale, Università di Genova, Genova, Italy renzo.difelice@unige.it www.react.dicca.unige.it

  2. Summary • The use of a-MDEA (MDEA + PZ) as industrial solvent in CO 2 capture process is highlighted • Very little however is known on the actual behaviour of the absorbent mixture • Experiments were carried out to throw some light on the problem • Main results show that interaction between PZ and MDEA is quite limited (e.g. no shuttle effect)

  3. a-MDEA as absorbent medium

  4. a-MDEA PROCESS

  5. advantages lauded …

  6. more advantages lauded …

  7. gas-liquid CO 2 equilibrium data taken from Bishnoi (2000)

  8. not quite clear how it works!

  9. experimental investigation FM: flow meter; SP: sampling point; TC: temperature controller; MC: membrane contactor; S: magnetic stirrer; GC: gas chromatograph; C: calcimeter

  10. MDEA 10% (0.84 M) gas side liquid side (practically no enhancement on the process rate compared to pure water)

  11. MDEA + CO 2 (chemistry) − + H 3 O + CO 2 + 2H 2 O ⇌ HCO 3 (R1) 2H 2 O ⇌ OH − + H 3 O + (R2) − + H 2 O ⇌ CO 3 2− + H 3 O + HCO 3 (R3) Protonation: MDEA + H 3 O + ⇌ MDEAH + + H 2 O (R4)

  12. PZ 2% (0.23 M) gas side liquid side (the enhancement on the process rate evident for about 3 h)

  13. PZ + CO 2 (Chemistry) − + H 3 O + CO 2 + 2H 2 O ⇌ HCO 3 (R1) 2H 2 O ⇌ OH − + H 3 O + (R2) − + H 2 O ⇌ CO 3 2− + H 3 O + HCO 3 (R3) Carbamate and dicarbamate formation: PZ + CO 2 + H 2 O ⇌ PZCOO − + H 3 O + (R5) PZCOO − + CO 2 + H 2 O ⇌ PZ COO − 2 + H 3 O + (R6) Protonations: PZ + H 3 O + ⇌ PZH + + H 2 O (R7) PZCOO − + H 3 O + ⇌ H + PZCOO − + H 2 O (R8)

  14. 10% MDEA + 2% PZ gas side liquid side (after 12h, based on PZ only) (the enhancement on the process rate evident for about 12 h)

  15. MDEA + PZ + CO 2 CHEMISTRY − + H 3 O + CO 2 + 2H 2 O ⇌ HCO 3 (R1) 2H 2 O ⇌ OH − + H 3 O + (R2) − + H 2 O ⇌ CO 3 2− + H 3 O + HCO 3 (R3) Carbamate and bicarbamate formation: PZ + CO 2 + H 2 O ⇌ PZCOO − + H 3 O + (R5) PZCOO − + CO 2 + H 2 O ⇌ PZ COO − 2 + H 3 O + (R6) Protonation: MDEA + H 3 O + ⇌ MDEAH + + H 2 O (R4) Protonations: PZ + H 3 O + ⇌ PZH + + H 2 O (R7) PZCOO − + H 3 O + ⇌ H + PZCOO − + H 2 O (R8)

  16. which protonation will prevail? protonation reactions are the only step where the two absorbents may interfere 𝐿 𝑓𝑟,4 𝐷 𝑁𝐸𝐹𝐵 𝐿 𝑓𝑟,7 𝐷 𝑄𝑎 𝑔 𝑁𝐸𝐹𝐵 = 1 + 𝐿 𝑓𝑟,4 𝐷 𝑁𝐸𝐹𝐵 𝐿 𝑓𝑟,7 𝐷 𝑄𝑎 R4 will prevail over R7 with the result of freeing PZ, which become available for more CO 2 absorption

  17. SIMPLIFIED MDEA + PZ + CO 2 CHEMISTRY − + H 3 O + CO 2 + 2H 2 O ⇌ HCO 3 (R1) 2H 2 O ⇌ OH − + H 3 O + (R2) − + H 2 O ⇌ CO 3 2− + H 3 O + HCO 3 (R3) Carbamate and dicarbamate formation: PZ + CO 2 + H 2 O ⇌ PZCOO − + H 3 O + (R5) PZCOO − + CO 2 + H 2 O ⇌ PZ COO − 2 + H 3 O + (R6) Protonation: MDEA + H 3 O + ⇌ MDEAH + + H 2 O (R4) Protonations: PZ + H 3 O + ⇌ PZH + + H 2 O (R7) PZCOO − + H 3 O + ⇌ H + PZCOO − + H 2 O (R8)

  18. bit of modelling … we use the classical film theory 𝑞 𝐷𝑃2 𝐾 𝐷𝑃2 = 𝑙 𝑁 + 𝐼 1 𝐹𝑙 𝑀

  19. bit of modelling… in order to estimate E 𝜖 2 𝐷 𝑘 𝜖𝑦 2 + 𝑠 𝐸 𝑗𝑘 = 0 𝑘 𝑗 (with the pseudo-steady-state-hypothesis a reasonable assumption) At x =0 (membrane-liquid interface) 𝜖𝐷 𝑘 𝜖𝑦 = 0 for every component j excluding CO 2 for which 𝑞 𝐷𝑃2,𝑁 𝐷 𝐷𝑃2 = 𝐼 At x =δ (liquid film -liquid bulk interface) 𝐷 𝑘 = 𝐷 𝑘,𝑐 valid for any components.

  20. bit of modelling … ( all necessary data from literature, no fitting parameters)

  21. CONCLUSIONS • Observed behavior of the MDEA+PZ absorbing mixtures can be explained without the need to introduce «exotic» steps • «Shuttle» mechanism can also be discarded • Rather than a -MDEA, MDEA+PZ mixtures should be named e -PZ

  22. PIPERAZINE AND METHYLDIETHANOLAMINE INTERRELATIONSHIPS IN CO 2 ABSORPTION BY AQUEOUS AMINE MIXTURES Camilla Costa 1 , Renzo Di Felice 2 , Paolo Moretti 1 , Maddalena Oliva 1 , Rouzbeh Ramezani 2 1 Dipartimento di Chimica e Chimica Industriale, Università di Genova, Genova, Italy 2 Dipartimento di Ingegneria Civile Chimica ed Ambientale, Università di Genova, Genova, Italy renzo.difelice@unige.it www.react.dicca.unige.it

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend