particle in a box 0 x l x 0 y l y
play

Particle in a Box 0 < x < L x , 0 < y < L y , 0 < z - PowerPoint PPT Presentation

Particle in a Box 0 < x < L x , 0 < y < L y , 0 < z < L z k x ,k y ,k z ( r r ) sin k x x sin k y y sin k z z sin k x L x = 0 k x = n x n x = 1 , 2 , 3 , L x L x L y L z V D ( r k


  1. Particle in a Box 0 < x < L x , 0 < y < L y , 0 < z < L z ψ k x ,k y ,k z ( r r ) ∝ sin k x x sin k y y sin k z z π � � sin k x L x = 0 ⇒ k x = n x n x = 1 , 2 , 3 , · · · L x � � π ��� L x L y L z V D ( r k )wavevectors = π π π = π 3 π ��� V D ( r k )states = (2 S +1) π 3 � � 8.044 L19B1

  2. r ) ∝ exp[ ir Plane Wave ψ r ( r r ] k · r k Periodic Boundary Conditions ψ r ( r r + m x L x x ˆ + m y L y y ˆ+ m z L z z ˆ) = ψ r ( r r ) k k 2 π � � ik x ( x + m x L x ) ik x x ⇒ k x = e = n x n x = ± 1 , ± 2 , ± 3 , · · · e L x � � L x L y L z V D ( r k )wavevectors = 2 π 2 π 2 π = � π ��� (2 π ) 3 � π ��� V D ( r k )states = (2 S +1) � � (2 π ) 3 8.044 L19B 2

  3. The # of wavevectors with | - k ' | < k is the same in both cases. 1 4 4 V V πk 3 πk 3 #wavevectors( k ) = 8 = π 3 (2 π ) 3 3 3 n 2 k 2 2 m √ For free particles; E = → k ( E ) = E n 2 2 m 3 / 2 4 V V 2 m πk ( E ) 3 E 3 / 2 #wv( E ) = = (2 π ) 3 6 π 2 n 2 3 3 / 2 d V 2 m E 1 / 2 D wv( E ) = #wv( E ) = 4 π 2 n 2 dE 8.044 L19B3

  4. For free particles � 3 / 2 V 2 m � E 1 / 2 D states( E ) = (2 S + 1) 4 π 2 n 2 �� ε � ε 8.044 L19B4

  5. Fermions: Non-interacting, free, spin 1/2, T = 0 k z D( ε ) k F k y ε F ε k x Fermi sea Fermi wave vector k F Fermi energy E F = n 2 k F 2 / 2 m Fermi surface 8.044 L19B5

  6. N = 2 × D wavevectors( k ) × 4 3 = 8 V 3 πk F π k F 3 (2 π ) 3 3 � 1 / 3 3 π 2 ( N/V ) ∝ ( N/V ) 1 / 3 � k F = ⎞ 2 / 3 n 2 k 2 n 2 3 π 2 N ⎛ ∝ ( N/V ) 2 / 3 F E F = = ⎝ ⎠ 2 m 2 m V 8.044 L19B6

  7. D ( � ) = a � 1 / 2 � � F 3 / 2 2 N = D ( � ) d� = 3 a � F 0 � � F 5 / 2 2 3 ∝ N ( N/V ) 2 / 3 U = �D ( � ) d� = 5 a � = 5 N� F F 0 8.044 L19B7

  8. Consequences: Motion at T = 0 ¯ hP hP h P = ¯ p F = ¯ v F = p k P k F k F m Copper, one valence electron beyond a filled d shell N/V = 8 . 45 × 10 22 atoms-cm − 3 k F = 1 . 36 × 10 8 cm − 1 v F = 1 . 57 × 10 8 cm-s − 1 p F = 1 . 43 × 10 − 19 g-cm-s − 1 E F /k B = 81 , 000 K 8.044 L 19 B 8

  9. Consequences: P ( T = 0) 3 E F ∝ ( N/V ) 2 / 3 U = 5 NE F � � � � ∂U ∂E F = − 3 2 P = − = ( N/V ) E F 5 N 5 ∂V N,S ∂V N ' N EF − 2 3 V ∝ ( N/V ) 5 / 3 � � ∂P = − 5 ( P/V ) at T = 0 3 ∂V N,T 8.044 L19B9

  10. 1 �V 3 1 3 1 � � K T = − = = V �P N,T 5 P 2 ( N/V ) E F For potassium E F = 2 . 46 × 10 4 K = 3 . 39 × 10 − 12 ergs ( N/V ) conduction = 1 . 40 × 10 22 cm − 3 1 . 5 K T = 1 . 40 × 10 22 × 3 . 39 × 10 − 12 = 31 . 6 × 10 − 12 cm -ergs 3 − 1 The measued value is 31 × 10 − 12 ! 8.044 L 19 B 10

  11. Magnetic Susceptibility ε P H = Hz ˆ ε F E k, � = E ( k ) + µ e H E k, � = E ( k ) − µ e H µ e H D ( ε ) D ( ε ) 8.044 L 19 B 11

  12.     2 + µ e H D ( � F ) 2 − µ e H D ( � F )  N  −  N N � − N � =  2 2 2 HD ( � F ) ≡ χH = µ e HD ( � F ) M = µ � e 2 D ( � F ) χ = µ e This expression holds as long as kT « � F , so χ is temperature independent in this region. This is not Curie law behavior. It is called Pauli paramagnetism. 8.044 L 19 B1 2

  13. Temperature Dependence of < n P > k,m s < n P > = f ( E ) only, as in the Canonical Ensemble k,m s <n> ~ kT 1 T=0 T << ε F /k B ε F ε 8.044 L 19 B 13

  14. Estimate C V Classical Quantum # electrons N N ∼ N × kT # electrons influenced N � F 3 ∆ � 2 kT ∼ kT ∼ N ( kT ) 2 3 ∆ U 2 NkT � F 3 ∼ 2 Nk kT C V 2 Nk � F Exact result: C V = π 2 2 Nk kT � F 8.044 L19B14

  15. � ∞ N = < n ( �, µ ( T ) , T ) > D ( � ) d� 0 This expression implicitly determines µ = µ ( T ). � ∞ U = < n ( �, µ ( T ) , T ) > � D ( � ) d� 0 To determine C V from this expression one must take into account the temperature dependence of µ in addition to the explicit dependence of < n > on T . 8.044 L19B15

  16. ��� ���� � ��� ����� ε � �� � ε � ε < n > − 1 / 2 = − < n > − 1 / 2 [ ] [ ] [ ] [ ] at E = µ + δ at E = µ − δ 8.044 L19B16

  17. �� ε � � ε µ ε � Because D ( � ) is an increasing function of � , µ must decrease with increasing temperature. 8.044 L19B17

  18. Elementary Excitations Excitations out of the ground state in interacting many-body systems. For a 3D Coulomb gas of electrons Plasma oscillations (plasmons) ε ��� Collective modes: H.O.s Quasi-particles n 2 k 2 (‘dressed’ electrons) = 2 m ∗ � 8.044 L19B18

  19. Other collective modes Phonons, lattice vibrations in solids Spin waves, in Ferromagnets Ripplons, waves on surfaces Other quasi-particles Polarons, (electron+lattice distortion) in ionic materials 8.044 L19B19

  20. Some possible electronic densities of states in solids �� ε � �� ε � ����� ��������� ε � ε ε ���� �� ε � �� ε � ����������������������� ������������������� ε � ε ε ε � ������ 8.044 L19B20

  21. Finding µ ( T ) in an intrinsic semiconductor ��� �� ε � � � ε ε � µ ε � Assume the energy gap is � k B T . 8.044 L19B21

  22. � �� �� �� �� �� � � � � � � Comparison of 1 / ( e x + 1) with e − x when x > 0 and x 1 − e when x < 0. 8.044 L19B21a

  23. − ( E − µ ) /k B T − ( E G − µ ) /k B T − ( E − E G ) /k B T < n e > → e = e e � 3 / 2 � 2 m e V ( E − E G ) 1 / 2 D states ,e ( E ) = 2 π 2 n 2 � ∞ N e = < n e > D ( E ) dE E G � 3 / 2 − ( E G − µ ) /k B T V 2 m e � ∞ √ � δ e − δ/k B T dδ = 2 π 2 e n 2 0 � 3 / 2 V 2 m e k B T � − ( E G − µ ) /k B T = e π n 2 4 8.044 L19B22

  24. − ( µ − E ) /k B T < n h > = 1 − < n e > → e � 3 / 2 2 m h V � ( − E ) 1 / 2 D states ,h ( E ) = 2 π 2 n 2 � 0 N h = < n h > D ( E ) dE −∞ � 3 / 2 � ∞ √ V 2 m h � − µ/k B T δ e − δ/k B T dδ = 2 π 2 e n 2 0 � 3 / 2 V 2 m h k B T � − µ/k B T = e π n 2 4 8.044 L19B23

  25. N h = N e 3 / 2 − µ/k B T 3 / 2 − ( � G − µ ) /k B T m e = m e e h ( m h /m e ) 3 / 2 = e − � G /k B T e 2 µ/k B T (3 / 2) k B T ln( m h /m e ) = − � G + 2 µ µ = � G / 2 − (3 / 4) k B T ln( m e /m h ) 8.044 L19B24

  26. MIT OpenCourseWare http://ocw.mit.edu 8.044 Statistical Physics I Spring 2013 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend