particle flow at 40 mhz with the cms l1 trigger
play

Particle Flow at 40 MHz with the CMS L1 Trigger Christian Herwig, - PowerPoint PPT Presentation

Particle Flow at 40 MHz with the CMS L1 Trigger Christian Herwig, for the CMS L1PF Team CPAD Instrumentation Frontier Workshop December 8-10, 2019 Outline Motivation and the High-luminosity LHC Particle Flow reconstruction PUPPI


  1. Particle Flow at 40 MHz with the CMS L1 Trigger Christian Herwig, for the CMS L1PF Team CPAD Instrumentation Frontier Workshop December 8-10, 2019

  2. Outline • Motivation and the High-luminosity LHC • Particle Flow reconstruction • PUPPI Pileup subtraction • The Phase-II Upgrade to the L1 CMS Trigger • Progress of PF+PUPPI implementation C. Herwig — CPAD Instrumentation Frontier Workshop 2 Dec. 9, 2019

  3. We are here C. Herwig — CPAD Instrumentation Frontier Workshop 3 Dec. 9, 2019

  4. We are here Phase-II upgrades 10x dataset increase C. Herwig — CPAD Instrumentation Frontier Workshop 4 Dec. 9, 2019

  5. Discover Higgs! C. Herwig — CPAD Instrumentation Frontier Workshop 5 Dec. 9, 2019

  6. -1 s = 13 TeV, 36.1-139 fb July 2019 700 ) [GeV] Observed limits Expected limits ATLAS Preliminary 70 ~ ~ 60 600 t t production -1 139.0 fb 1 1 + m W ) = 0 50 ~ ∼ 0 1L, t Wb 0 1 → χ Limits at 95% CL 0 ) = m ∼ 1 ∼ χ b 1 χ 1 ~ , 40 m( t 0 [ATLAS-CONF-2019-17] 1 m( ∼ χ , 1 ~ Δ t m( 1 500 ) = m 30 t Δ 0 ∼ -1 χ 36.1 fb 1 ~ , 200 210 220 230 t m( ~ ~ 1 ∼ 0 ∼ 0 0L, t → t χ / t → Wb χ Δ 1 1 Constraints on BSM Physics 1 1 [1709.04183] 400 ~ ~ ~ ∼ 0 ∼ 0 ∼ 0 1L, t t / t Wb / t bff' → χ → χ → χ 1 1 1 1 1 1 [1711.11520] ~ ~ ~ ∼ ∼ ∼ 0 0 0 2L, t → t χ / t → Wb χ / t → bff' χ 300 1 1 1 1 1 1 [1708.03247] (especially strongly produced) ~ ∼ 0 monojet, t → bff' χ 1 1 [1711.03301] 200 ~ ∼ 0 t t , t → t χ 1 1 [1903.07570] ~ ∼ 0 c0L, t c → χ 1 1 100 [1805.01649] ~ ∼ 0 monojet, t → c χ 1 1 [1711.03301] 200 300 400 500 600 700 800 9001000 -1 Run 1, s = 8 TeV, 20 fb [1506.08616] ~ m( t ) [GeV] 1 C. Herwig — CPAD Instrumentation Frontier Workshop 6 Dec. 9, 2019

  7. HL-LHC 14 TeV Higgsino-like EWK processes 30 CMS Phase-2 -1 (%) 3000 fb (14 TeV) m(NLSP, LSP) [GeV] CMS Phase-2 Loss in signal significance [%] HL-LHC 3/ab, 14 TeV (soft-lepton A) Simulation Preliminary HL-LHC monojet 30 Simulation Preliminary SM HL-LHC 3/ab, 14 TeV (soft-lepton B) HE-LHC 15/ab, 27 TeV (soft-lepton B) LHeC monojet-like (proj) σ 25 FCC-hh (HE-LHC approx. rescaling) -1 L = 300 fb inv)/ ILC , 0.5/ab HE-LHC monojet data 500 HH → b b b b ILC , 1/ab 25 1000 -1 FCC-eh monojet-like CLIC / FCC-ee L = 1000 fb 2 380 380 10 data CLIC , 2.5/ab 1500 FCC-hh monojet → CLIC , 5/ab 20 -1 3000 L = 3000 fb B(H data 20 × 15 σ 15 Δ 95% CL upper limit on 10 10 10 5 CLIC: extrapolated below 5 GeV 5 Monojet reach in Δ m(NLSP,LSP) not displayed 1 0 0 200 400 600 800 1000 1200 1400 45 50 55 60 65 70 75 80 150 200 250 300 350 400 miss m(NLSP) Minimum threshold on E (GeV) Minimum jet p threshold [GeV] T T Rare+Exotic Higgs EWK BSM SM hh C. Herwig — CPAD Instrumentation Frontier Workshop 7 Dec. 9, 2019

  8. L1 HLT 40 mhz 100 khz 1 khz 35 pp/event (400x rej) (100x rej) Typically limited to information from a single sub-detector (calorimeter, muons) C. Herwig — CPAD Instrumentation Frontier Workshop 8 Dec. 9, 2019

  9. L1 HLT 40 mhz 750 khz 7.5 khz 200 pp/event (50x rej) (100x rej) Naively scales with luminosity C. Herwig — CPAD Instrumentation Frontier Workshop 9 Dec. 9, 2019

  10. Challenges to Phase-II L1 Trigger • L1 Accept rate scales ~ linearly with luminosity increase • Must maintain performance in hostile environment! C. Herwig — CPAD Instrumentation Frontier Workshop 10 Dec. 9, 2019

  11. � � Challenges to Phase-II L1 Trigger • L1 Accept rate scales ~ linearly with luminosity increase • Must maintain performance in hostile environment! Take hh production in 4 b (or bb ττ ) decay mode 0.14 Normalized entries Higher pileup ATLAS Simulation 0.12 = 6 = 10 20 ≤ < 21 N N → Extra stochastic energy PV PV = 14 = 18 N N 0.1 PV PV enters into the jet cone Pythia8 dijets, √ s = 8 TeV 0.08 � from LCW topo-clusters 0.06 More low-p T jets to "measure 0.04 high" than vice versa 0.02 → Higher trigger rate 0 0 5 10 15 20 25 30 [GeV] C. Herwig — CPAD Instrumentation Frontier Workshop 11 Dec. 9, 2019

  12. Challenges to Phase-II L1 Trigger • L1 Accept rate scales ~ linearly with luminosity increase • Must maintain performance in hostile environment! It gets worse !! Background (uncorrelated coincidences) ~ (lumi) 2 beamspot "cigar"~30cm Not new problems, solved offline with Particle Flow Reco+ C. Herwig — CPAD Instrumentation Frontier Workshop 12 Dec. 9, 2019

  13. Particle Flow Reconstruction • Idea: combine measurements across all sub-detectors to achieve best possible resolution per object • Algorithm returns a list of single-particle candidates Muons Tracks Electrons Muon segments (Isolated) photons ECal Charged hadrons HCal Neutral hadrons C. Herwig — CPAD Instrumentation Frontier Workshop 13 Dec. 9, 2019

  14. Particle Flow Reconstruction • Idea: combine measurements across all sub-detectors to achieve best possible resolution per object 0.5 Energy resolution resolution Anti-k , R = 0.4 Calo CMS CMS 0.6 T 0.45 • Algorithm returns a list of single-particle candidates Calo Simulation Ref PF | | < 1.3 Simulation η PF 0.4 0.35 miss Muons 0.4 0.3 T Tracks Relative p 0.25 Electrons 0.2 Muon 0.2 0.15 0.1 segments (Isolated) photons 0.05 0 0 50 100 150 200 250 20 100 200 1000 ECal miss p (GeV) Ref p (GeV) T,Ref T Charged hadrons improved jet pT resolution improved missing pT resolution Improved Jet p T resolution Improved p T -miss resolution HCal Neutral hadrons C. Herwig — CPAD Instrumentation Frontier Workshop 14 Dec. 9, 2019

  15. Pileup Per Particle Identification • Idea: get probability that a neutral PF candidate is pileup based on local activity from the leading vertex -1 -1 0.36 fb 0.36 fb (13 TeV) (13 TeV) fraction of particles weight>0.01 3 10 charged LV CMS CMS Neutral Particles 2 charged PU 10 Data Preliminary neutrals LV Pileup 10 0.06 MC neutrals PU N/ N 1 p T ,i 1 − 10 X α ∼ 0.04 Δ 2 − Leading 10 ∆ R i 3 − i ∈ cone 10 Vertex − 4 10 0.02 5 − 10 2 Data/MC Weight 1407.6013 1 0 -5 0 5 10 15 0 0 0.2 0.4 0.6 0.8 1 C α Weight i C. Herwig — CPAD Instrumentation Frontier Workshop 15 Dec. 9, 2019

  16. Pileup Per Particle Identification • Idea: get probability that a neutral PF candidate is pileup based on local activity from the leading vertex -1 35.9 fb (13 TeV) 40 ) [GeV] CMS 35 Preliminary ( u 30 σ 25 Improved p T -miss 20 resolution 15 Response-corrected miss PF p Z ee → 10 T miss PUPPI p Z ee → T 5 JME-18-001 Uncertainty 0.7 0 0.6 5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50 Number of vertices C. Herwig — CPAD Instrumentation Frontier Workshop 16 Dec. 9, 2019

  17. Architecture of the Phase-II L1 Trigger C. Herwig — CPAD Instrumentation Frontier Workshop 17 Dec. 9, 2019

  18. Architecture of the Phase-II L1 Trigger 2-3 GeV tracks | η |<2.5 9 ɸ sectors vertices C. Herwig — CPAD Instrumentation Frontier Workshop 18 Dec. 9, 2019

  19. Architecture of the Phase-II L1 Trigger Layer 1: Run the PF+PUPPI algorithm itself Layer 2: Algorithms using PF+PUPPI inputs C. Herwig — CPAD Instrumentation Frontier Workshop 19 Dec. 9, 2019

  20. Strategy for L1 Implementation • Take advantage of the inherent locality of PF+PUPPI • Distribute computation across many processing units • Processing is divided into three main steps: Layer 1 • Regionalization (VHDL) • PF+PUPPI calculation (High Level Synthesis C++) • Algorithms using PF+PUPPI inputs (HLS C++) Layer 2 • HLS: no expertise required! • Fast prototyping, debugging, comparison of alg variants C. Herwig — CPAD Instrumentation Frontier Workshop 20 Dec. 9, 2019

  21. Inputs versus η , PF+PUPPI regions TMUX 18 → 6 C. Herwig — CPAD Instrumentation Frontier Workshop 21 Dec. 9, 2019

  22. 100% Regionizer validation match! # objects CMS Internal 100 Simulation Tracks EM calo Emulation Calo Muons 80 VHDL algorithm validated with simulated data inputs 60 40 # objects CMS Internal 80 20 Tracks EM calo Calo Muons 70 ttbar events 0 60 0 2 4 6 8 10 12 14 16 μ ~200 Region index 50 40 30 20 10 0 0 10 20 30 40 50 60 70 80 90 Input link index C. Herwig — CPAD Instrumentation Frontier Workshop 22 Dec. 9, 2019

  23. HW Particle Flow + PUPPI • Regionalization → small # of objects to link (truncation) • Cluster input pre-processing: exploit shapes • PUPPI 'linearized'; smaller cone size Work in Progress • Classify cluster: • Hadronic or EM-like? • Remove pileup deposits • Less work for PUPPI! C. Herwig — CPAD Instrumentation Frontier Workshop 23 Dec. 9, 2019

  24. Resource drivers • Many Δ R calculations for track-calo linking drives DSP • Scales as (#tracks)*(#calo clusters) • PUPPI weights drive BRAM usage • To compute p T / Δ R quickly requires division tables • DSPs also used to map (p T , Δ R) → PUPPI weights Resource LUT FF BRAM DSP Usage 528k 785k 871 1020 % VU9P 45% 33% 40% 15% PF+PUPPI resources for 22 tracks, 15+13 calo clusters C. Herwig — CPAD Instrumentation Frontier Workshop 24 Dec. 9, 2019

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend