p oiseuille gsl
play

P OISEUILLE + GSL Q UADRIO , P HIL .T RANS .R.S OC .A 2011 Stability - PowerPoint PPT Presentation

Stability of Poiseuille flow + GSL M.Quadrio L INEAR STABILITY Introduction OF PLANE P OISEUILLE FLOW Formulation OVER A G ENERALIZED S TOKES LAYER Results .Martinelli 2 & P M.Quadrio 1 , 2 , F .Schmid 2 1 Dip. Ing. Aerospaziale,


  1. Stability of Poiseuille flow + GSL M.Quadrio L INEAR STABILITY Introduction OF PLANE P OISEUILLE FLOW Formulation OVER A G ENERALIZED S TOKES LAYER Results .Martinelli 2 & P M.Quadrio 1 , 2 , F .Schmid 2 1 Dip. Ing. Aerospaziale, Politecnico di Milano (I) 2 LadHyx, École Polytechnique (F) ETC 13, Warsaw, September 2011

  2. O UTLINE Stability of Poiseuille flow + GSL M.Quadrio Introduction I NTRODUCTION 1 Formulation Results F ORMULATION 2 R ESULTS 3

  3. O UTLINE Stability of Poiseuille flow + GSL M.Quadrio Introduction I NTRODUCTION 1 Formulation Results F ORMULATION 2 R ESULTS 3

  4. P OISEUILLE + GSL Q UADRIO , P HIL .T RANS .R.S OC .A 2011 Stability of Poiseuille flow + GSL M.Quadrio w = A cos ( κ x − ω t ) Introduction Formulation Results c 2h λ y z x Flow δ

  5. T HE SPANWISE OSCILLATING BOUNDARY LAYER Q UADRIO & R ICCO , JFM 2011 Stability of Poiseuille flow + GSL w ( y , t ) M.Quadrio TSL Introduction Formulation Results w ( y , x ) SSL w ( y , x − ct ) GSL

  6. T URBULENT DRAG REDUCTION Q UADRIO ET AL ., JFM 2009 Stability of Poiseuille flow + GSL 5 20 40 -10 M.Quadrio 36 41 43 45 45 46 44 20 5 -20 -20 -23 -23 -22 -17 -10 -2 40 0 10 0 20 23 8 0 Introduction 4 15 38 41 44 46 45 36 6 -15 -18 0 0 Formulation 2 38 46 -16 -21 4 - -10 Results 31 42 45 47 -20 24 45 13 10 3 40 46 -15 -18 2 0 15 41 -8 -17 8 15 30 k x 47 30 45 47 33 -16 -2 17 0 0 0 1 0 4 - 2 2 18 21 29 35 43 45 46 46 32 -7 -14 3 0 16 0 0 2 20 44 46 48 48 34 10 -14 21 4 30 33 40 0 45 46 47 40 8 1 -8 -10 13 24 0 31 1 21 34 37 41 45 45 47 39 31 18 10 3 -3 -6 -9 -9 -1 7 14 19 26 24 16 33 36 40 42 42 42 36 14 1 -7 1 24 28 20 0 10 32 36 37 38 37 36 26 1 -8 -1 19 29 29 24 16 34 36 35 33 22 5 -9 4 27 32 0 16 18 22 27 32 34 33 34 33 33 33 32 31 27 21 5 0 3 5 0 -6 -3 -7 -9 -7 -7 -9 -7 -6 -3 5 0 0 5 3 21 27 31 32 33 34 33 34 32 27 22 18 16 -3 -2 -1 0 1 2 3 ω

  7. Q UESTION : D O WAVES AFFECT TRANSITION ? A PRELIMINARY SURVEY BY DNS Stability of Poiseuille flow + GSL M.Quadrio Temporal problem (plane channel flow) by DNS, Introduction Formulation Re = 2000 Results Transition scenario: oblique waves (Reddy et al., JFM 1998) Optimal i.c. for α = 1 , β = ± 1 , 1% random noise Initial energy = 2 × transition threshold No generality

  8. O BLIQUE WAVES A FTER - TRANSIENT DRAG REDUCTION , A = 0 . 25 Stability of Poiseuille flow + GSL M.Quadrio Introduction Formulation Results

  9. O BLIQUE WAVES G max / G max , re f , A = 0 . 25 Stability of Poiseuille flow + GSL M.Quadrio Introduction Formulation Results

  10. O UTLINE Stability of Poiseuille flow + GSL M.Quadrio Introduction I NTRODUCTION 1 Formulation Results F ORMULATION 2 R ESULTS 3

  11. L INEAR STABILITY : FORMULATION M ODAL AND NON - MODAL CHARACTERISTICS Stability of Poiseuille flow + GSL M.Quadrio Introduction Similar to Orr-Sommerfeld-Squire problem, but... Formulation Additional transversal stationary base flow Results � � δ x e − j 4 / 3 π �� e j κ x Ai − jy with 1 W ( x , y ) = Ai ( 0 ) ℜ δ x = ( ν / κ u y , 0 ) 1 / 3 Streamwise-varying coefficients!

  12. F OURIER TRANSFORM IN x Stability of W ( x ) is sinusoidal: Poiseuille flow + GSL M.Quadrio p κ � e jp κ n x e j κ x e − j α x dx � = 0 for n + κ − α = 0 Introduction Formulation Results + M q i ( y , t ) e j ( i + m ) κ x ∑ q ( x , y , t ) = ˆ i = − M The problem becomes global in x Block-tridiagonal matrix Each block is like a standard Orr-Sommerfeld-Squire problem Size of full problem is ( 2 M + 1 ) 2 × a single OSSq

  13. A HUGE PARAMETRIC STUDY Stability of Poiseuille flow + GSL M.Quadrio Large number of parameters: Introduction Spanwise wavenumber β of the perturbation Formulation Base flow wave number κ Results Base flow amplitude A Reynolds number Re Wall-normal resolution N Modal truncation (streamwise resolution) M

  14. O UTLINE Stability of Poiseuille flow + GSL M.Quadrio Introduction I NTRODUCTION 1 Formulation Results F ORMULATION 2 R ESULTS 3

  15. C HANGES IN LONG - TERM STABILITY κ = 1, β = 1 . 5 Stability of Poiseuille flow + GSL M.Quadrio Introduction Formulation Results

  16. C HANGES IN MAXIMUM TRANSIENT GROWTH κ = 1, β = 1 . 5 Stability of Poiseuille flow + GSL M.Quadrio Introduction Formulation Results

  17. C ONCLUSIONS , PERSPECTIVES Stability of Poiseuille flow + GSL M.Quadrio Introduction Large effects on at least one (temporal) transition Formulation scenario Results Formulation of the linear stability problem Least-stable eigenvalue reduced Transient growth weakened Energy transfer among wavenumbers?

  18. O PTIMAL INPUT κ = 1, β = 1 . 5, A = 0 ( TOP ) VS A = 1 ( BOTTOM ) Stability of u v w Poiseuille 0.11 - 0.74 2.68 - 2.63 3.28 - 3.79 flow + GSL M.Quadrio Introduction Formulation Results

  19. O PTIMAL OUTPUT κ = 1, β = 1 . 5, A = 0 ( TOP ) VS A = 1 ( BOTTOM ) Stability of u v w Poiseuille 481x - 44 X 0.47x - 0.51 X 0.40x - 0.46 X flow + GSL M.Quadrio Introduction Formulation Results

  20. M ODAL TRUNCATION ( ADAPTIVE RESOLUTION ) Stability of Poiseuille flow + GSL M.Quadrio Introduction Formulation Results

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend