p a rt icle colli s ion s in tur b u len t flow s
play

P a rt icle Colli s ion s in Tur b u len t Flow s Michel Vok u hle - PowerPoint PPT Presentation

COLE NORMALE SUP RIEURE DE LYON P a rt icle Colli s ion s in Tur b u len t Flow s Michel Vok u hle Labo r a t oi r e de P hy s i qu e 13 Decembe r 2 0 13 C O LE NORMALE SUP R IE UR E DE LYON M . Vok u hle P a rt icle Colli s ion s


  1. ÉCOLE NORMALE SUP ÉRIEURE DE LYON P a rt icle Colli s ion s in Tur b u len t Flow s Michel Voßk u hle Labo r a t oi r e de P hy s i qu e 13 Decembe r 2 0 13

  2. ÉC O LE NORMALE SUP É R IE UR E DE LYON M . Voßk u hle › P a rt icle Colli s ion s in Tur b u len t Flow s 2

  3. ÉC O LE NORMALE SUP É R IE UR E DE LYON M . Voßk u hle › P a rt icle Colli s ion s in Tur b u len t Flow s 2

  4. ÉC O LE NORMALE SUP É R IE UR E DE LYON M . Voßk u hle › P a rt icle Colli s ion s in Tur b u len t Flow s 2

  5. ÉC O LE NORMALE SUP É R IE UR E DE LYON M . Voßk u hle › P a rt icle Colli s ion s in Tur b u len t Flow s 2

  6. In tr od u c t ion Pr evalence of s ling M u l t i p le colli s ion s K S v s. DN S ÉC O LE NORMALE SUP É R IE UR E DE LYON P a rt icle Colli s ion s in Tur b u len t Flow s Out line In tr od u c t ion Pr evalence of s ling / ca ust ic s/ RU M effec t M u l t i p le colli s ion s K S v s. DN S M . Voßk u hle › P a rt icle Colli s ion s in Tur b u len t Flow s 3

  7. In tr od u c t ion Pr evalence of s ling M u l t i p le colli s ion s K S v s. DN S ÉC O LE NORMALE SUP É R IE UR E DE LYON R ain fo r ma t ion and t he d r o p le t s ize di str ib ut ion t ime [ min ] r ela t ive ma ss 3 0 2 0 1 0 1 0 2 1 0 3 1 0 4 1 1 0 d r o p r adi us [ µm ] Lamb Meteorol. Monogr. (2 00 1);S haw ARFM (2 00 3) ∂ f ( a ) = + n u clea t ion / collision/ ∂t conden s a t ion c oale s cence M . Voßk u hle › P a rt icle Colli s ion s in Tur b u len t Flow s 4

  8. In tr od u c t ion Pr evalence of s ling M u l t i p le colli s ion s K S v s. DN S ÉC O LE N OR MALE SUP É R IE UR E DE LY O N R ain fo r ma t ion and t he d r o p le t s ize di str ib ut ion t ime [ min ] r ela t ive ma ss 3 0 2 0 1 0 1 0 2 1 0 3 1 0 4 1 1 0 d r o p r adi us [ µm ] Lamb Meteorol. Monogr. (2 00 1);S haw ARFM (2 00 3) ∂ f ( a ) = + 1 a ′′ 2 Γ ( a ′′ , a ′ ) f ( a ′′ ) f ( a ′ ) d a ′ a 2 a n u clea t ion / 2 ∫ ∂t conden s a t ion 0 − ∫ Γ ( a , a ′ ) f ( a ) f ( a ′ ) d a ′ ∞ 0 a ′′ 3 = a 3 − a ′ 3 M . Voßk u hle › P a rt icle Colli s ion s in Tur b u len t Flow s 4

  9. In tr od u c t ion Pr evalence of s ling M u l t i p le colli s ion s K S v s. DN S ÉC O LE N OR MALE SUP É R IE UR E DE LY O N R ain fo r ma t ion and t he d r o p le t s ize di str ib ut ion t ime [ min ] r ela t ive ma ss 3 0 Many Ot he r A pp lica t ion s 2 0 1 0 1 0 2 1 0 3 1 0 4 › p lane t g r ow t h in 1 1 0 d r o p r adi us [ µm ] pr o t o p lane t a r y di s k s Lamb Meteorol. Monogr. (2 00 1);S haw ARFM (2 00 3) › die s el spr ay s › ... ∂ f ( a ) = + 1 a ′′ 2 Γ ( a ′′ , a ′ ) f ( a ′′ ) f ( a ′ ) d a ′ a 2 a n u clea t ion / 2 ∫ ∂t conden s a t ion 0 − ∫ Γ ( a , a ′ ) f ( a ) f ( a ′ ) d a ′ ∞ 0 a ′′ 3 = a 3 − a ′ 3 M . Voßk u hle › P a rt icle Colli s ion s in Tur b u len t Flow s 4

  10. In tr od u c t ion Pr evalence of s ling M u l t i p le colli s ion s K S v s. DN S ÉC O LE N OR MALE SUP É R IE UR E DE LY O N Kine t ic t heo r y In tr od u c t o r y exam p le: › s im p lifica t ion: only one p a rt icle s ize Colli s ion cylinde r › colli s ion r a t e fo r one p a rt icle R c = n π ( 2 a ) 2 ⟨ w ⟩ › ove r all colli s ion r a t e a N c = 1 2 n 2 π ( 2 a ) 2 ⟨ w ⟩ 2 a ������������������������������������������������������� Γ kin ( a ) ⟨ w ⟩ ∆ t Colli s ion ke r nel Γ kin ( a ) = π ( 2 a ) 2 ⟨ w ⟩ M . Voßk u hle › P a rt icle Colli s ion s in Tur b u len t Flow s 5

  11. In tr od u c t ion Pr evalence of s ling M u l t i p le colli s ion s K S v s. DN S ÉC O LE N OR MALE SUP É R IE UR E DE LY O N ( Ine rt ial ) P a rt icle colli s ion s in Tur b u len t Flow s DN S › fini t e den s i t y ρ p > ρ f › Navie r–Stokes equ a t ion s › fini t e s ize 0 < a ≪ η › p e r iodic box › e qu a t ion s of mo t ion: › 3 84 3 g r id p oin ts d t = u ( X , t ) − V d X d V d t = V , › R e λ = 13 0 + G τ p Kinema t ic S im u la t ion s Maxey & R iley P hy s. Fl u id s (1 98 3) Ga t ignol J . méc . t héo r. a pp l . (1 98 3) › s yn t he t ic tur b u lence › dimen s ionle ss qu an t i t y: St oke s n u mbe r › efficien t F u ng e t al . JFM (1 99 2) a 2 τ p = 2 ρ p St = τ K ρ f 9 η 2 M . Voßk u hle › P a rt icle Colli s ion s in Tur b u len t Flow s 6

  12. In tr od u c t ion Pr evalence of s ling M u l t i p le colli s ion s K S v s. DN S ÉC O LE N OR MALE SUP É R IE UR E DE LY O N De t e r mining t he colli s ion r a t e › p a rt of s im u la t ion box wi t h p a rt icle s M . Voßk u hle › P a rt icle Colli s ion s in Tur b u len t Flow s 7

  13. In tr od u c t ion Pr evalence of s ling M u l t i p le colli s ion s K S v s. DN S ÉC O LE N OR MALE SUP É R IE UR E DE LY O N De t e r mining t he colli s ion r a t e › p a rt of s im u la t ion box wi t h p a rt icle s › divide in t o s egmen ts › know which p a rt icle s in which cell M . Voßk u hle › P a rt icle Colli s ion s in Tur b u len t Flow s 7

  14. In tr od u c t ion Pr evalence of s ling M u l t i p le colli s ion s K S v s. DN S ÉC O LE N OR MALE SUP É R IE UR E DE LY O N De t e r mining t he colli s ion r a t e › p a rt of s im u la t ion box wi t h p a rt icle s › divide in t o s egmen ts › know which p a rt icle s in which cell › con s ide r only surr o u nding cell s M . Voßk u hle › P a rt icle Colli s ion s in Tur b u len t Flow s 7

  15. In tr od u c t ion Pr evalence of s ling M u l t i p le colli s ion s K S v s. DN S ÉC O LE N OR MALE SUP É R IE UR E DE LY O N De t e r mining t he colli s ion r a t e ex tr a p ola t ion i s inexac t r a t he r us e in t e rp ola t ion Colli s ion ke r nel N c ( T ) = N c = 1 2 n 2 Γ ( a ) T V s y s M . Voßk u hle › P a rt icle Colli s ion s in Tur b u len t Flow s 8

  16. In tr od u c t ion Pr evalence of s ling M u l t i p le colli s ion s K S v s. DN S ÉC O LE N OR MALE SUP É R IE UR E DE LY O N Pr evalence of t he s ling / ca ust ic s/ RU M effec t M . Voßk u hle › P a rt icle Colli s ion s in Tur b u len t Flow s 9

  17. In tr od u c t ion Pr evalence of s ling M u l t i p le colli s ion s K S v s. DN S ÉC O LE N OR MALE SUP É R IE UR E DE LY O N S affman & Tur ne r JFM (1 95 6) › St → 0: p a rt icle s follow flow R c = n ∫ − w r ( 2 a , Ω ) Θ [ − w r ( 2 a , Ω )] d Ω 2 a › ave r age t o ob t ain t o t al colli s ion r a t e 2 ∫ 1 N c = 1 2 ⟨∣ w r ( 2 a )∣⟩ d Ω 2 n a › a ppr oxima t e ⟨∣ w x ( 2 a )∣⟩ = 2 a ⟨∣ ∂u x / ∂x ∣⟩ › a ssu me Ga uss ian st a t i st ic s wi t h ⟨( ∂u x / ∂x ) 2 ⟩ = ε / 1 5 ν 1 / 2 ( 2 a ) 3 Γ ST = ( 8 π 1 5 ) τ K M . Voßk u hle › P a rt icle Colli s ion s in Tur b u len t Flow s 1 0

  18. In tr od u c t ion Pr evalence of s ling M u l t i p le colli s ion s K S v s. DN S ÉC O LE N OR MALE SUP É R IE UR E DE LY O N Colli s ion ke r nel (s) St → 0 S affman & Tur ne r JFM (1 95 6) 1 / 2 ( 2 a ) 3 Γ ST = ( 8 π 1 5 ) τ K St → ∞ Ab r aham s on Chem. Eng. Sci. (1 9 7 5 ) Γ A = Γ kin wi t h V r m s = ( η / τ K ) f ( St , R e λ ) √ π ( 2 a ) 2 η τ K f ( St , R e λ ) Γ A = 4 M . Voßk u hle › P a rt icle Colli s ion s in Tur b u len t Flow s 11

  19. In tr od u c t ion Pr evalence of s ling M u l t i p le colli s ion s K S v s. DN S ÉC O LE N OR MALE SUP É R IE UR E DE LY O N Colli s ion ke r nel (s) St → 0 S affman & Tur ne r JFM (1 95 6) 1 / 2 ( 2 a ) 3 Γ ST = ( 8 π 1 5 ) τ K 1 00 80 Γ τ K /( 2 a ) 3 6 0 Pr efe r en t ial S ling / ca ust ic s/ RU M 40 concen tr a t ion ? effec t ? 20 0 0 1 2 3 4 5 St St → ∞ Ab r aham s on Chem. Eng. Sci. (1 9 7 5 ) Γ A = Γ kin wi t h V r m s = ( η / τ K ) f ( St , R e λ ) √ π ( 2 a ) 2 η τ K f ( St , R e λ ) Γ A = 4 M . Voßk u hle › P a rt icle Colli s ion s in Tur b u len t Flow s 11

  20. In tr od u c t ion Pr evalence of s ling M u l t i p le colli s ion s K S v s. DN S ÉC O LE N OR MALE SUP É R IE UR E DE LY O N Pr efe r en t ial concen tr a t ion 700 70 › ma t hema t ically exac t 600 y (pixels) 60 y (mm) Γ SC = 2π ( 2 a ) 2 g ( 2 a )⟨∣ w r ∣⟩ 500 50 40 400 › r adial di str ib ut ion f u nc t ion g ( r ) 100 200 300 400 10 20 30 40 50 x (pixels) x (mm) Moncha u x e t al . Phys. Fluids (2 0 1 0 ) ( D 2 − 3 ) , g ( r ) ∼ ( r / η ) r / η ≪ 1 Su nda r am & Collin s JFM (1 99 7) 3 5 3 0 R e λ = 13 0 25 g ( 2 a ) 20 15 10 5 0 0 1 2 3 4 5 6 St M . Voßk u hle › P a rt icle Colli s ion s in Tur b u len t Flow s 12

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend