overview
play

Overview Motivation Real Algebraic Numbers Well-Definedness - PowerPoint PPT Presentation

Algebraic Numbers in Isabelle/HOL 1 Ren e Thiemann and Akihisa Yamada Institute of Computer Science University of Innsbruck ITP 2016, August 23, 2016 1 Supported by the Austrian Science Fund (FWF) project Y757 Overview Motivation Real


  1. Algebraic Numbers in Isabelle/HOL 1 Ren´ e Thiemann and Akihisa Yamada Institute of Computer Science University of Innsbruck ITP 2016, August 23, 2016 1 Supported by the Austrian Science Fund (FWF) project Y757

  2. Overview Motivation Real Algebraic Numbers Well-Definedness Calculating Real Roots of Rational Polynomial Factorizing Rational Polynomial Arithmetic on Real Algebraic Numbers Complex Algebraic Numbers Thiemann and Yamada (Univ. Innsbruck) Algebraic Numbers in Isabelle/HOL 2/22

  3. Motivation Certify Complexity of Matrix Interpretations • given: automatically generated complexity proof for program χ A = ( x − 1) · ( − 39 + 360 x − 832 x 2 + 512 x 3 ) • criterions • polynomial complexity if norms of all complex roots of χ A � 1 • degree d in O ( n d ): more calculations with complex roots of χ A Thiemann and Yamada (Univ. Innsbruck) Algebraic Numbers in Isabelle/HOL 3/22

  4. Motivation Certify Complexity of Matrix Interpretations • given: automatically generated complexity proof for program χ A = ( x − 1) · ( − 39 + 360 x − 832 x 2 + 512 x 3 ) • criterions • polynomial complexity if norms of all complex roots of χ A � 1 • degree d in O ( n d ): more calculations with complex roots of χ A • problem: certifier crashed as numbers got too complicated Thiemann and Yamada (Univ. Innsbruck) Algebraic Numbers in Isabelle/HOL 3/22

  5. Motivation Closed Form for Cubic Polynomials • − 39 + 360 x − 832 x 2 + 512 x 3 = 0 iff √ � � � 1 34 3 √ • x = 13 + 383 + 91 + 9 i 383 , 24 3 √ 91+9 i √ √ √ 17 ( 1+ i 3 ) � • x = 13 383 − 1 3 √ � � 24 − 1 − i 3) 91 + 9 i 383, or 3 48 √ 24 91+9 i √ √ √ 17 ( 1 − i 3 ) � • x = 13 383 − 1 3 √ � � 24 − 1 + i 3) 91 + 9 i 383 48 3 √ 24 91+9 i Thiemann and Yamada (Univ. Innsbruck) Algebraic Numbers in Isabelle/HOL 4/22

  6. Motivation Closed Form for Cubic Polynomials • − 39 + 360 x − 832 x 2 + 512 x 3 = 0 iff √ � � � 1 34 3 √ • x 1 = 13 + 383 + 91 + 9 i 383 , 24 3 √ 91+9 i √ √ √ 17 ( 1+ i 3 ) � • x 2 = 13 383 − 1 3 √ � � 24 − 1 − i 3) 91 + 9 i 383, or 3 48 √ 24 91+9 i √ √ √ 17 ( 1 − i 3 ) � • x 3 = 13 383 − 1 3 √ � � 24 − 1 + i 3) 91 + 9 i 383 48 3 √ 24 91+9 i • problem: calculate and decide � Re ( x j ) 2 + Im ( x j ) 2 � 1 norm ( x j ) = for all j ∈ { 1 , 2 , 3 } Thiemann and Yamada (Univ. Innsbruck) Algebraic Numbers in Isabelle/HOL 4/22

  7. Motivation Closed Form for Cubic Polynomials • − 39 + 360 x − 832 x 2 + 512 x 3 = 0 iff √ � � � 1 34 3 √ • x 1 = 13 + 383 + 91 + 9 i 383 , 24 3 √ 91+9 i √ √ √ 17 ( 1+ i 3 ) � • x 2 = 13 383 − 1 3 √ � � 24 − 1 − i 3) 91 + 9 i 383, or 3 48 √ 24 91+9 i √ √ √ 17 ( 1 − i 3 ) � • x 3 = 13 383 − 1 3 √ � � 24 − 1 + i 3) 91 + 9 i 383 48 3 √ 24 91+9 i • problem: calculate and decide � Re ( x j ) 2 + Im ( x j ) 2 � 1 norm ( x j ) = for all j ∈ { 1 , 2 , 3 } • problem: no closed form for roots of polynomials of degree 5 and higher Thiemann and Yamada (Univ. Innsbruck) Algebraic Numbers in Isabelle/HOL 4/22

  8. Motivation Algebraic Numbers • number x ∈ R ∪ C is algebraic iff it is root of non-zero rational polynomial • x 1 = “root #1 of − 39 + 360 x − 832 x 2 + 512 x 3 ” • x 2 = “root #2 of − 39 + 360 x − 832 x 2 + 512 x 3 ” • x 3 = “root #3 of − 39 + 360 x − 832 x 2 + 512 x 3 ” Figure: − 39 + 360 x − 832 x 2 + 512 x 3 Thiemann and Yamada (Univ. Innsbruck) Algebraic Numbers in Isabelle/HOL 5/22

  9. Motivation Problems with Algebraic Numbers • well-definedness is there a “root #3 of − 23 + x − 5 x 2 + x 3 ” Thiemann and Yamada (Univ. Innsbruck) Algebraic Numbers in Isabelle/HOL 6/22

  10. Motivation Problems with Algebraic Numbers • well-definedness is there a “root #3 of − 23 + x − 5 x 2 + x 3 ” • representation is there a simpler representation of “root #3 of − 108 − 72 x + 108 x 2 + 84 x 3 − 27 x 4 − 32 x 5 − 2 x 6 + 4 x 7 + x 8 ” Thiemann and Yamada (Univ. Innsbruck) Algebraic Numbers in Isabelle/HOL 6/22

  11. Motivation Problems with Algebraic Numbers • well-definedness is there a “root #3 of − 23 + x − 5 x 2 + x 3 ” • representation is there a simpler representation of “root #3 of − 108 − 72 x + 108 x 2 + 84 x 3 − 27 x 4 − 32 x 5 − 2 x 6 + 4 x 7 + x 8 ” • comparisons is “root #3 of − 39 + 360 x − 832 x 2 + 512 x 3 ” smaller than 1 Thiemann and Yamada (Univ. Innsbruck) Algebraic Numbers in Isabelle/HOL 6/22

  12. Motivation Problems with Algebraic Numbers • well-definedness is there a “root #3 of − 23 + x − 5 x 2 + x 3 ” • representation is there a simpler representation of “root #3 of − 108 − 72 x + 108 x 2 + 84 x 3 − 27 x 4 − 32 x 5 − 2 x 6 + 4 x 7 + x 8 ” • comparisons is “root #3 of − 39 + 360 x − 832 x 2 + 512 x 3 ” smaller than 1 • arithmetic calculate a polynomial representing “root #2 of − 2 + x 2 ” + “root #1 of − 3 + x 2 ” Thiemann and Yamada (Univ. Innsbruck) Algebraic Numbers in Isabelle/HOL 6/22

  13. Motivation Problems with Algebraic Numbers • well-definedness Sturm’s method is there a “root #3 of − 23 + x − 5 x 2 + x 3 ” • representation factorization of rational polynomials is there a simpler representation of “root #3 of − 108 − 72 x + 108 x 2 + 84 x 3 − 27 x 4 − 32 x 5 − 2 x 6 + 4 x 7 + x 8 ” • comparisons Sturm’s method is “root #3 of − 39 + 360 x − 832 x 2 + 512 x 3 ” smaller than 1 • arithmetic matrices, determinants, resultants, . . . calculate a polynomial representing “root #2 of − 2 + x 2 ” + “root #1 of − 3 + x 2 ” Thiemann and Yamada (Univ. Innsbruck) Algebraic Numbers in Isabelle/HOL 6/22

  14. Motivation Main Result: Formalization of Algebraic Numbers • common properties on algebraic numbers ( R and C ) • executable real algebraic numbers • executable complex algebraic numbers indirectly • easy to use via data-refinement for R and C √ evaluate � 3 ⌊ norm ( 2 + 3 + 2 i ) · 100 ⌋ ֒ → 216 • applicable inside (eval) and outside Isabelle (export-code) Thiemann and Yamada (Univ. Innsbruck) Algebraic Numbers in Isabelle/HOL 7/22

  15. Motivation Related work • Cyril Cohen (ITP 2012) • Coq • similar, but partly based on different paper proofs • our work: more focus on efficient execution Thiemann and Yamada (Univ. Innsbruck) Algebraic Numbers in Isabelle/HOL 8/22

  16. Motivation Related work • Cyril Cohen (ITP 2012) • Coq • similar, but partly based on different paper proofs • our work: more focus on efficient execution • Wenda Li and Larry Paulson (CPP 2016) • independant Isabelle/HOL formalization, different approach • oracle (MetiTarski) performs computations • certified code validates results Thiemann and Yamada (Univ. Innsbruck) Algebraic Numbers in Isabelle/HOL 8/22

  17. Motivation Related work • Cyril Cohen (ITP 2012) • Coq • similar, but partly based on different paper proofs • our work: more focus on efficient execution • Wenda Li and Larry Paulson (CPP 2016) • independant Isabelle/HOL formalization, different approach • oracle (MetiTarski) performs computations • certified code validates results • experimental comparison (examples of Li and Paulson) MetiTarski 1.83 seconds (@ 2.66 Ghz) + validation of Li and Paulson 4.16 seconds (@ 2.66 Ghz) Our generated Haskell code 0.03 seconds (@ 3.5 Ghz) Thiemann and Yamada (Univ. Innsbruck) Algebraic Numbers in Isabelle/HOL 8/22

  18. Real Algebraic Numbers Well-Definedness Well-Definedness • “root #3 of − 23 + x − 5 x 2 + x 3 ” • “root #3 of − 25 + 155 x − 304 x 2 + 192 x 3 ” Thiemann and Yamada (Univ. Innsbruck) Algebraic Numbers in Isabelle/HOL 9/22

  19. Real Algebraic Numbers Well-Definedness Sturm’s Method • input • polynomial over R • interval ( [2 , 5], ( − π, 7], ( −∞ , 3), or ( −∞ , + ∞ ) ) • output: count-roots p itval • number of distinct real roots of p in interval itval Thiemann and Yamada (Univ. Innsbruck) Algebraic Numbers in Isabelle/HOL 10/22

  20. Real Algebraic Numbers Well-Definedness Sturm’s Method • input • polynomial over R • interval ( [2 , 5], ( − π, 7], ( −∞ , 3), or ( −∞ , + ∞ ) ) • output: count-roots p itval • number of distinct real roots of p in interval itval • formalized in Isabelle by Manuel Eberl • nearly used as black-box Thiemann and Yamada (Univ. Innsbruck) Algebraic Numbers in Isabelle/HOL 10/22

  21. Real Algebraic Numbers Well-Definedness Sturm’s Method • input • polynomial over R • interval ( [2 , 5], ( − π, 7], ( −∞ , 3), or ( −∞ , + ∞ ) ) • output: count-roots p itval • number of distinct real roots of p in interval itval • formalized in Isabelle by Manuel Eberl • nearly used as black-box • adapted functions to work over Q number of distinct real roots of polynomial over Q in interval over Q reason: apply Sturm’s method to implement R formalization: locale for homomorphisms Thiemann and Yamada (Univ. Innsbruck) Algebraic Numbers in Isabelle/HOL 10/22

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend