overview
play

Overview Secluded WIMPs Out of seclusion via Colliders - PowerPoint PPT Presentation

Dark Matter Out of Seclusion Brian Batell Perimeter Institute with Maxim Pospelov and Adam Ritz - arXiv:0903.0363 - arXiv:0903.3396 Overview Secluded WIMPs Out of seclusion via Colliders Higgs-strahlung at B-factories


  1. Dark Matter Out of Seclusion ∗ Brian Batell Perimeter Institute ∗ with Maxim Pospelov and Adam Ritz - arXiv:0903.0363 - arXiv:0903.3396

  2. Overview • Secluded WIMPs • Out of seclusion via – Colliders ∗ Higgs-strahlung at B-factories – Direct detection experiments ∗ Endothermic and exothermic inelastic scattering ∗ Higher order elastic scattering 1

  3. Secluded Dark Matter Pospelov, Ritz, Voloshin ’07 V µν B µν χ SM Holdom ’86 2

  4. “Secluded” regime • m χ > m V – Annihilation via χχ → V V – Relic abundance independent of kinetic mixing – Makes direct detection, collider signatures tricky if mixing small. Can’t rule out WIMP hypotheses in principle if secluded χ V V χ 3

  5. Astrophysical signatures 1) Light mediator − → enhanced galactic annihilation cross section • e.g. Sommerfeld enhancement: long range force distort wavefunctions near the origin from the plane wave to the Coulomb-type. Arkani-Hamed, Finkbeiner, Slatyer, Weiner ’08 Pospelov, Ritz ’08 N ∼ πα ′ v 2) m V ≤ GeV = ⇒ vector won’t decay to (anti-)protons by kinematics Connection with PAMELA, ATIC, FERMI, HESS, ...? 4

  6. B-factory Signatures BB, Pospelov, Ritz ’09; Essig, Schuster, Toro ’09; Reece, Wang ’09; 5

  7. B-factories B -factory (BaBar and Belle) advantages: • Large data sets ∼ 500 fb − 1 • COM energy √ s ≃ 10 GeV, close to masses of new particle 6

  8. 2 V µν F µν + m 2 L int = − κ v ′ h ′ V 2 V µ • Higgs ′ -strahlung: e + e − → γ ∗ , V ∗ → h ′ V • Cross section σ ∼ 20 fb • Leads to 6 lepton final state 7

  9. V µ decays 10 4 1.00 0.50 10 5 0.20 0.10 GeV 10 6 Br V 0.05 V 0.02 10 7 0.01 10 8 0.1 0.2 0.5 1.0 2.0 5.0 10.0 0.1 0.2 0.5 1.0 2.0 5.0 10.0 m V GeV m V GeV • V → hadrons (Red) • V → e + e − (Blue) • V → µ + µ − (Green) V µ always has a significant branching to leptons 8

  10. h ′ decays 1 1 10 4 0.001 10 8 10 6 h ’ GeV Br h ’ 10 12 10 9 10 16 10 12 10 20 10 24 10 15 0.1 0.2 0.5 1.0 2.0 5.0 10.0 0.1 0.2 0.5 1.0 2.0 5.0 10.0 m h ’ GeV m h ’ GeV • h ′ → V V (Red) • h ′ → e + e − (Blue) • h ′ → µ + µ − (Green) -Decays of h ′ depend on whether m h ′ > m V or m h ′ < m V 9

  11. Sensitivity 10.0 10.0 5.0 5.0 2.0 2.0 m h ’ GeV m h ’ GeV 1.0 1.0 0.5 0.5 0.2 0.2 0.1 0.1 0.1 0.2 0.5 1.0 2.0 5.0 10.0 0.1 0.2 0.5 1.0 2.0 5.0 10.0 m V GeV m V GeV • 2 l + missing energy (light) • 6 e (medium) • 6 µ (dark) 10

  12. Direct Detection Finkbeiner, Slatyer, Weiner, Yavin ’09; BB, Pospelov, Ritz ’09; 11

  13. Multi-component WIMPs • If WIMP is a complex scalar or Dirac fermion, the real components χ, χ ′ can be split after U(1) S is broken so that ∆ m = m χ 2 − m χ 1 � iχ i σ µ ∂ µ χ i − 1 � � − ie ′ V µ (¯ L = 2( mχ i χ i + h . c . ) χ 1 σ µ χ 2 − ¯ χ 2 σ µ χ 1 ) i =1 , 2 • No tree level elastic scattering process χ 1 N → χ 1 N • Example of inelastic dark matter Smith, Weiner ’01 • Direct detection depends sensitively on ∆ m 12

  14. Rich scattering structure • Endothermic inelastic : χ 1 N → χ 2 N • Exothermic inelastic : χ 2 N → χ 1 N (depends on χ 2 population) • Second-order elastic : χ 1 N → virtual states → χ 1 N χ 1 χ 2 χ 1 χ 2 χ 1 V V γ γ N N 13

  15. � � Elastic: χ 1 N → χ 1 N m 200 GeV 1 10 1 • CDMS constraints ( ∆ m = 10 MeV) 10 2 10 3 10 4 10 5 10 20 50 100 200 500 1000 m V MeV Sensitivity diminishes as WIMP probes nucleus 14

  16. Exothermic: χ 2 N → χ 1 N • Requires substantial population of excited WIMPs χ 2 • Decay of χ 2 in ‘minimal’ U(1) S model: ⇒ rapid decay χ 2 → χ 1 + e + e − – ∆ m > 2 m e = – ∆ m < 2 m e = ⇒ Loop induced χ 2 → χ 1 + 3 γ � κ � 13 � 100 MeV � 4 � 2 � ∆ m τ > 4 × 10 − 47 GeV × 10 − 3 100 keV m V • χ 2 lifetime longer than the age of the universe for small ∆ m . 15

  17. � � � � Exothermic: χ 2 N → χ 1 N m 1 TeV, v E 500 km s m 100 GeV, v E 500 km s 10 4 10 4 10 5 10 5 10 6 0 50 100 150 200 0 50 100 150 200 m keV m keV • DAMA preferred region 90(99)% CL - dark(light) – endothermic (solid) – exothermic (dashed) 16

  18. Conclusions • Secluded WIMPS • B -factory signals: – Higgs ′ -strahlung → multi-lepton final state – Probe U (1) S couplings κ ∼ O (10 − 2 − 10 − 3 ) • Rich direct detection phenomenology – Endothermic, exothermic, and (2nd order) elastic scattering provide sensitivity for different ranges of parameter space 17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend