overview
play

Overview Motivation Introduction of the RDM method Recent results - PowerPoint PPT Presentation

The Reduced Density Matrix Method: Application Of T 2 N -representability Condition and Development of Highly Accurate Solver Maho Nakata , Bastiaan J. Braams, Katsuki Fujisawa, Mituhiro Fukuda, Jerome K. Percus, Makoto Yamashita, Zhengji


  1. The Reduced Density Matrix Method: Application Of T 2 ′ N -representability Condition and Development of Highly Accurate Solver Maho Nakata † , Bastiaan J. Braams, Katsuki Fujisawa, Mituhiro Fukuda, Jerome K. Percus, Makoto Yamashita, Zhengji Zhao maho@riken.jp † RIKEN ACCC, Emory Univ., Chuo Univ., Tokyo Tech Institute, New York Univ., Lawrence Berlekey National Lab. Odyssey 2008 2008/6/1-6/6

  2. Overview • Motivation • Introduction of the RDM method • Recent results • Summary and future direction

  3. Motivation:theoretical chemistry

  4. Motivation:theoretical chemistry Goals: prediction and design of chemical reaction • What happens if we mix substance A and B? • CO 2 conversion. • Drug design. etc...

  5. Basic equation: Schr¨ odinger equation

  6. Basic equation: Schr¨ odinger equation (electronic) Hamiltonian H N ( − � 2 Ze 2 ) e 2 ∑ ∑ ∇ 2 H = j − + 2 m e 4 πǫ 0 r j 4 πǫ 0 r ij j = 1 i > j

  7. Basic equation: Schr¨ odinger equation (electronic) Hamiltonian H N ( − � 2 Ze 2 ) e 2 ∑ ∑ ∇ 2 H = j − + 2 m e 4 πǫ 0 r j 4 πǫ 0 r ij j = 1 i > j Schr¨ odinger equation

  8. Basic equation: Schr¨ odinger equation (electronic) Hamiltonian H N ( − � 2 Ze 2 ) e 2 ∑ ∑ ∇ 2 H = j − + 2 m e 4 πǫ 0 r j 4 πǫ 0 r ij j = 1 i > j Schr¨ odinger equation H Ψ (1 , 2 , · · · N ) = E Ψ (1 , 2 , · · · N )

  9. Basic equation: Schr¨ odinger equation (electronic) Hamiltonian H N ( − � 2 Ze 2 ) e 2 ∑ ∑ ∇ 2 H = j − + 2 m e 4 πǫ 0 r j 4 πǫ 0 r ij j = 1 i > j Schr¨ odinger equation H Ψ (1 , 2 , · · · N ) = E Ψ (1 , 2 , · · · N ) Pauli principle: antisymmetric wavefunctionis Ψ ( · · · , i , · · · , j , · · · ) = − Ψ ( · · · , j , · · · , i , · · · )

  10. Solving Schr¨ odinger equation is difficult We know the basic equation but...

  11. Solving Schr¨ odinger equation is difficult We know the basic equation but... The general theory of quantum mechanics is now almost com- plete. · · · the whole of chemistry are thus completely known, and the difficultly is only that the exact application of these laws leads to equations much too complected to be soluble. [Dirac 1929] “Quantum Mechanics of Many-Electron Systems.”

  12. Simpler quantum mechanical method

  13. Simpler quantum mechanical method A success story: The Density Functional Theory: [Hoheberg-Kohn 1964] [Kohn-Sham 1965] Ground state electronic density ρ ( r ) ⇓ external potential v ( r ) ⇓ Hamiltonian H ⇓ Schr¨ odinger equation Very difficult functional F [ ρ ( r )] . Practically this is semi-empirical theory.

  14. Preferable methods for chemistry

  15. Preferable methods for chemistry • From the first principle.

  16. Preferable methods for chemistry • From the first principle. • Separability or nearsightedness: split a whole system into subsystems.

  17. Preferable methods for chemistry • From the first principle. • Separability or nearsightedness: split a whole system into subsystems. • Language: better understanding of chemistry and physics.

  18. Preferable methods for chemistry • From the first principle. • Separability or nearsightedness: split a whole system into subsystems. • Language: better understanding of chemistry and physics. • Low scaling cost.

  19. Preferable methods for chemistry • From the first principle. • Separability or nearsightedness: split a whole system into subsystems. • Language: better understanding of chemistry and physics. • Low scaling cost. ✞ ☎ The RDM method! ✝ ✆

  20. The RDM method

  21. The RDM method The second-order reduced density matrix: [Husimi 1940], [L¨ owdin 1954], [Mayer 1955], [Coulson 1960], [Nakatsuji 1976] ( N ) ∫ Γ (12 | 1 ′ 2 ′ ) = Ψ ∗ (123 · · · N ) Ψ (1 ′ 2 ′ 3 · · · N ) d µ 3 ··· N 2

  22. The RDM method The second-order reduced density matrix: [Husimi 1940], [L¨ owdin 1954], [Mayer 1955], [Coulson 1960], [Nakatsuji 1976] ( N ) ∫ Γ (12 | 1 ′ 2 ′ ) = Ψ ∗ (123 · · · N ) Ψ (1 ′ 2 ′ 3 · · · N ) d µ 3 ··· N 2 Can we construct simpler quantum chemical method using Γ (12 | 1 ′ 2 ′ ) as a basic variable?

  23. The RDM method The second-order reduced density matrix: [Husimi 1940], [L¨ owdin 1954], [Mayer 1955], [Coulson 1960], [Nakatsuji 1976] ( N ) ∫ Γ (12 | 1 ′ 2 ′ ) = Ψ ∗ (123 · · · N ) Ψ (1 ′ 2 ′ 3 · · · N ) d µ 3 ··· N 2 Can we construct simpler quantum chemical method using Γ (12 | 1 ′ 2 ′ ) as a basic variable? ☛ ✟ Yes ✡ ✠

  24. Scaling Method # of variable (discritized) Exact? Ψ N , ( r !) Yes Γ (12 | 1 ′ 2 ′ ) 4 , ( r 4 ) Yes

  25. Scaling Method # of variable (discritized) Exact? Ψ N , ( r !) Yes Γ (12 | 1 ′ 2 ′ ) 4 , ( r 4 ) Yes Good scaling

  26. Scaling Method # of variable (discritized) Exact? Ψ N , ( r !) Yes Γ (12 | 1 ′ 2 ′ ) 4 , ( r 4 ) Yes Good scaling Equivalent to Schr¨ odinger eq.

  27. The RDM method

  28. The RDM method The Hamiltonian contains only 1 and 2-particle interaction. i a j + 1 ∑ ∑ j a † w i 1 i 2 j 1 j 2 a † i 1 a † v i H = i 2 a j 2 a j 1 2 ij i 1 i 2 j 1 j 2

  29. The RDM method The Hamiltonian contains only 1 and 2-particle interaction. i a j + 1 ∑ ∑ j a † w i 1 i 2 j 1 j 2 a † i 1 a † v i H = i 2 a j 2 a j 1 2 ij i 1 i 2 j 1 j 2 The total energy E becomes, i a j | Ψ � + 1 ∑ ∑ j � Ψ | a † w i 1 i 2 j 1 j 2 � Ψ | a † i 1 a † v i E = i 2 a j 2 a j 1 | Ψ � 2 ij i 1 i 2 j 1 j 2 ∑ ∑ w i 1 i 2 j 1 j 2 Γ i 1 i 2 v i j γ i = j + j 1 j 2 . ij i 1 i 2 j 1 j 2

  30. The RDM method

  31. The RDM method Here we defined the second-order reduced density matrix Γ i 1 i 2 j 1 j 2 (2-RDM) j 1 j 2 = 1 Γ i 1 i 2 2 � Ψ | a † i 1 a † i 2 a j 2 a j 1 | Ψ � ,

  32. The RDM method Here we defined the second-order reduced density matrix Γ i 1 i 2 j 1 j 2 (2-RDM) j 1 j 2 = 1 Γ i 1 i 2 2 � Ψ | a † i 1 a † i 2 a j 2 a j 1 | Ψ � , and the first-order reduced density matrix γ i j (1-RDM) j = � Ψ | a † γ i i a j | Ψ � .

  33. The ground state/ N -representability condition

  34. The ground state/ N -representability condition The ground state energy and 2-RDM can be obtained....[Rosina 1968]

  35. The ground state/ N -representability condition The ground state energy and 2-RDM can be obtained....[Rosina 1968] E g = min Ψ � Ψ | H | Ψ �       ∑ ∑  w i 1 i 2 j 1 j 2 Γ i 1 i 2  v i j γ i   = min j +   j 1 j 2 γ, Γ      ij i 1 i 2 j 1 j 2 

  36. The ground state/ N -representability condition The ground state energy and 2-RDM can be obtained....[Rosina 1968] E g = min Ψ � Ψ | H | Ψ �       ∑ ∑  w i 1 i 2 j 1 j 2 Γ i 1 i 2  v i j γ i   = min j +   j 1 j 2 γ, Γ      ij i 1 i 2 j 1 j 2  [Mayers 1955], [Tredgold 1957]: Lower than the exact one

  37. The ground state/ N -representability condition The ground state energy and 2-RDM can be obtained....[Rosina 1968] E g = min Ψ � Ψ | H | Ψ �       ∑ ∑  w i 1 i 2 j 1 j 2 Γ i 1 i 2  v i j γ i   = min j +   j 1 j 2 γ, Γ      ij i 1 i 2 j 1 j 2  [Mayers 1955], [Tredgold 1957]: Lower than the exact one N -representability condition [Coleman 1963] Γ (12 | 1 ′ 2 ′ ) → Ψ (123 · · · N ) γ (1 | 1 ′ ) → Ψ (123 · · · N )

  38. N -representability condition

  39. N -representability condition • “Is a given 2-RDM N -representable?”

  40. N -representability condition • “Is a given 2-RDM N -representable?” QMA-complete

  41. N -representability condition • “Is a given 2-RDM N -representable?” QMA-complete ⇒ NP-hard [Deza 1997] [Liu et al. 2007]

  42. N -representability condition • “Is a given 2-RDM N -representable?” QMA-complete ⇒ NP-hard [Deza 1997] [Liu et al. 2007] • Approximation is essential

  43. N -representability condition • “Is a given 2-RDM N -representable?” QMA-complete ⇒ NP-hard [Deza 1997] [Liu et al. 2007] • Approximation is essential • P , Q -condition [Coleman 1963]

  44. N -representability condition • “Is a given 2-RDM N -representable?” QMA-complete ⇒ NP-hard [Deza 1997] [Liu et al. 2007] • Approximation is essential • P , Q -condition [Coleman 1963] • G -condition [Garrod et al. 1964]

  45. N -representability condition • “Is a given 2-RDM N -representable?” QMA-complete ⇒ NP-hard [Deza 1997] [Liu et al. 2007] • Approximation is essential • P , Q -condition [Coleman 1963] • G -condition [Garrod et al. 1964] • T 1 , T 2 -condition [Zhao et al. 2004], [Erdahl 1978]

  46. N -representability condition • “Is a given 2-RDM N -representable?” QMA-complete ⇒ NP-hard [Deza 1997] [Liu et al. 2007] • Approximation is essential • P , Q -condition [Coleman 1963] • G -condition [Garrod et al. 1964] • T 1 , T 2 -condition [Zhao et al. 2004], [Erdahl 1978] • Quite good for atoms and molecules [Garrod et al 1975, 1976], [Nakata et al. 2001, 2002], [Zhao et al. 2004] [Mazziotti 2004]

  47. 。 N -representability condition

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend