overview
play

Overview Intro: Motivation & introduction conformal window - PowerPoint PPT Presentation

Hyperscaling rela.on for the conformal window Roman Zwicky (Southampton) 15.2.12, strong-BSM workshop Bad Honnef Overview Intro: Motivation & introduction conformal window studies [4 slides] Part I: mass-deformed conformal


  1. Hyperscaling rela.on for the conformal window Roman Zwicky (Southampton) 15.2.12, strong-BSM workshop Bad Honnef

  2. Overview • Intro: Motivation & introduction conformal window studies [4 slides] • Part I: mass-deformed conformal gauge theories (observables) [8 slides] - hyperscaling laws of hadronic observables e.g. f[0 ++ ] ~ m η ( γ *) • Part II: the quark condensate -- various appraoches [4 slides] . lattice material (Del Debbio’s talks) Del Debbio & RZ walking technicolour (Shrock, Sannino, others) PRD’10 & PLB’11

  3. types of gauge theories Adjustable: gauge group SU(N c ) -- N f (massless) fermions -- fermion irrep Focus on asymptotically free theories (not many representations) 2) well-defined on lattice 2) chance for unification in TC n F 16 11? N c =3 IR-conformal walking-type QCD-type TC-models: Dietrich-Sannino’04 Susskind-Weinberg ‘79 Holdom ‘84 Luty-Okui’04 confinement & chiral symmetry breaking SU L (n F ) x SU R (n F ) → SU V (n F ) the latter is dynamical eletroweak symmetry breaking M W = g f π (TC)

  4. Conformal window (the picture) “SU(N)” non-SUSY N=1 SUSY N f N f fund fund 15 8 2A 6 10 2A 4 5 upper line AF QCD 2 2S 2S adj adj N c N c 2 3 4 5 6 7 8 2 3 4 5 6 7 8 . β 0 tuned small α ∗ β 0 2 π = − β 1 ≪ 1 s just below pert. BZ/BM fixed pt: g n i p l u o c k a e w g n i l p u o c g n lower line BZ/BM fixed pt o r lower line Dyson-Schwinger eqs t s “electromagnetic dual” predict chiral symmetry breaking (lattice results later ...) assume in between conformal use β NSVZ ( γ *)= 0 to get γ * γ *| strong =1 (unitarity bound QQ state) γ * | strong ≈ 1 DS eqs ladder

  5. anomalous dimension canonical dimension d: (classical) e.g. fermion field q: composite: d q = D − 1 d ¯ qq = D − 1 2 anomalous dimension γ : (quantum corrections) scheme-dependent physical γ = γ ∗ + γ 0 ( g − g ∗ ) + O (( g − g ∗ ) 2 ) ... - significance: change of renormalization scale μ → μ ’ : scaling leading correction � µ � γ ∗ O ( µ ) = O ( µ ′ ) (1 + O (ln µ, /µ ′ )) µ ′ - QCD: UV-fixed point (asymptotic freedom) - γ * ( g * = 0)= 0 (trivial) - correction RGE (logarithmic) - our interest: IR fixed point non-trivial - γ * ≠ 0 (large?)

  6. scaling dimension scaling dimension: Δ scaling = d canonical + γ anomalous 4 Δ � L = C i ( µ ) O i ( µ ) i relevant marginal irrrelevant • Value of Δ O is a dynamical problem (= d O at trivial fixed-point, g * =0) - unitarity bounds Δ Scalar ≥ 1 etc Mack’77 - Δ OO’ ≠ Δ O Δ O’ generally (except SUSY and large-N c ) • gauge theory: expect to be most relevant operator ¯ qq Δ qq = 3 + γ qq = 3 - γ m ( γ m = γ * at fixed point) γ * is a very important parameter for model building Ward-identity

  7. Part I: Observables for Monte Carlo (lattice) for conformal gauge theories -- parametric control --

  8. or how to identify Part I: Observables in a CFT? a CFT (on lattice) pure-CFT: Vanishing β -function & correlators (form 2 & 3pt correlators known) e.g. <O(x)O(0)> ~ (x 2 ) - Δ deformed-CFT: Lattice: quarks massive / finite volume ⇒ consider mass-deformed conformal gauge theories (mCGT) * L = L CGT − m ¯ qq * hardly related to 2D CFT mass deformation a part of algebra and ‘therefore’ integrability is maintained

  9. • if mass-deformation relevant Δ qq = 3 - γ * < 4 theory flows away from fixed-point (likely) physical picture: ( Miransky ’98) finite m q ; quarks decouple ➭ pure YM confines (string tension confirmed lattice) ➭ hadronic spectrum signature: hadronic observables (masses, decay constants) hypothesis : hadronic observables → 0 as m q → 0 (conformality restored) O ∼ m η O (1 + .. ) , η O ( γ ∗ ) > 0 If fct η O known: a) way to measure γ * b) consistency test through many observable

  10. Mass scaling from trace anomaly & Feynman-Hellman thm 2 β G 2 + N f m (1 + γ m )¯ α | on − shell = 1 trace/scale anomaly: θ α qq Adler et al, Collins et al � H ( p ) | H ( k ) � = 2 E p δ (3) ( p − k ) ⇒ β = 0 & N.Nielsen ’77 Fujikawa ’81 reminiscent 2 M 2 h = N f (1 + γ ∗ ) m � H | ¯ qq | H � GMOR-relation ∂λ = � ψ ( λ ) | ∂ ˆ H ( λ ) ∂ E λ Feynman-Hellman thm: | ψ ( λ ) � ∂λ ∂ � ψ ( λ ) | ψ ( λ ) � idea: = 0 ∂λ m ∂ M 2 ∂ m = N f m � H | ¯ qq | H � H ★ applied to our case ( λ ➣ m) : m ∂ M H 1 1+ γ ∗ M H ★ combined with GMOR-like: ∂ m = scaling law for all masses 1 M H ∼ m 1+ γ ∗

  11. Brief comparison with QCD QCD-spectrum mCGT-spectrum • m ALL = m 1/(1+ γ * ) O( Λ ETC γ * /(1+ γ * ) ) • m ρ = O( Λ QCD ) + m q m B = m b + O( Λ QCD ) m π = O( (m q Λ QCD ) 1/2 ) • Breaking global flavour symmetry : SU L (n F ) x SU R (n F ) → SU V (n F ) (chiral symmetry) QCD: mCGT: CGT: spontaneous yes * no no explicit yes yes no (mass term) confinement yes yes no * F π ≠ 0 m → 0 order parameter ⇒ no chiral perturbation theory in mCGT (pion not singled out -- Weingarten-inequality still applies)

  12. Hyperscaling laws from RG physical states no anomalous dim. O 12 ( g, ˆ m ≡ m µ , µ ) ≡ � ϕ 2 |O| ϕ 1 � • local matrix element: RG -trafo O 12 1 . O 12 ( g, ˆ m, µ ) = b − γ O O 12 ( g ′ , ˆ m ′ , µ ′ ) , µ = bµ' g ′ = b 0+ γ g g m ′ = b 1+ γ ∗ ˆ ˆ y m = 1 + γ ∗ , γ g < 0 (irrelevant) m , change physical units m ′ , µ ′ ) = b − ( d O + d ϕ 1 + d ϕ 2 ) O 12 ( ˆ 2 . O 12 ( ˆ m ′ , µ ) m ′ = 1 ⇒ trade b for m 3 . Choose b s.t. ˆ “master equation” Hyperscaling relations m ) ( ∆ O + d ϕ 1 + d ϕ 2 ) / (1+ γ ∗ ) O 12 ( ˆ m, µ ) ∼ ( ˆ ⇒ * From Weinberg-like RNG eqs on correlation functions (widely used in critical phenomena)

  13. Applications: • master formula (local matrix element): � ϕ 1 |O| ϕ 2 � ∼ m ( ∆ O + d ϕ 1 + d ϕ 2 ) / (1+ γ ∗ ) alternative derivation ... 2 2 M 2 h = N f (1 + γ ∗ ) m � H | ¯ qq | H � ∼ m 1. hadronic masses: 1+ γ ∗ more later 3 − γ ∗ 4 � G 2 � ∼ m 1+ γ ∗ , � ¯ qq � ∼ m 2. vacuum condensates: on... 1+ γ ∗ 3. decay constants: | φ 〉 = |H(adronic) 〉 N.B. ( Δ H = d H = -1 choice)

  14. Remarks S-parameter: S = 4 π Π V − A (0) − [pion − pole] � ( q µ q ν − q 2 g µ ν ) δ ab Π V − A ( q 2 ) = i d 4 xe iq · x � 0 | T ( V µ a ( x ) V ν b (0) − ( V ↔ A )) | 0 � f 2 f 2 f 2 V A P A ( q 2 ) ≃ P − q 2 + ... . Π V − hadronic representation: V − q 2 − A − q 2 − m 2 m 2 m 2 • difficulties: a) non-local b) difference (density not positive definite) pion-pole Π W − TC (0) ∼ O ( m − 1 ) V − A (conspiracy) cancellations modulo Π mCGT (0) ∼ O ( m 0 ) V − A improve on non- perturbatve computations ( q 2 ) ∼ m 2 /y m (lattice, FRG, DSE...) for − q 2 ≫ ( Λ ETC ) 2 Π mCGT V − A q 2 Sannino’10 free theory

  15. Summary - Transition • low energy (hadronic) observables carry memory of scaling phase 1 1+ γ ∗ m H ∼ m 2 − γ ∗ f H (0 − ) ∼ m 3 − γ ∗ 1+ γ ∗ � ¯ qq � ∼ m 1+ γ ∗ • “all” quantities scale with one parameter -- witness relations between the zoo critical exponents α , β , γ , ν .. = hyperscaling • clarify: heavy quark phase and mCGT are parametrically from 1 m B (0 − ) ∼ m b m H (0 − ) ∼ m similar: � = 1+ γ ∗ 2 − γ ∗ f B (0 − ) ∼ m − 1 / 2 f H (0 − ) ∼ m distinct: � = 1+ γ ∗

  16. Part 2: story quark condensate <qq> the most relevant operator • important for conformal TC/ partially gauged TC models

  17. How does CFT react to a perturbation Unparticle area L e ff ∼ C O| H | 2 VEV → C O v 2 I. couple CFT Higgs-sector: 1 B ≃ Cv 2 Λ ∆ O Λ 4 Λ B ∼ ( Cv 2 ) 4 − ∆ O criteria breaking (NDA): ⇒ B Fox, Rajaraman, Shirman ’07 II. Heuristics: deconstruct the continuous spectrum of a 2-function. Stephanov’07 2.0 Infinite sum of adjusted particles can mimick continuous spectrum 1.5 1.0 0.5 n = δ 2 ( M 2 � n ) ∆ − 2 0.5 1.0 1.5 2.0 2.5 3.0 f 2 � O ( x ) ∼ f n ϕ n ( x ) ; � ϕ n |O| 0 � ∼ f n , M 2 n = n δ 2 n ➭ tadpole & mass term as potential ⇒ find new minimum . Delgado, Espinoso, Quiros’07 n M 2 n ϕ 2 V e ff = − m � n f n ϕ n − 1 / 2 � n

  18. minimise - solve - reinsert: mf n + M 2 � ϕ n � = − mf n /M 2 δ ϕ n V e ff = 0 ⇒ ⇒ n ϕ n = 0 n � Λ 2 f 2 δ → 0 IR s ∆ O − 3 ds � O � ∼ � n f n � ϕ n � − m � → − m UV n Λ 2 n M 2 n result depends on IR and UV physics ➪ need model(s) III. Within conformal gauge theory Sannino RZ ’08 generic 0 ++ -operator: O → ¯ qq within gauge theories N.B. 4D only ”known” CFT gauge theories. why? - Λ UV → Λ ETC where Δ qq → 3 ⇒ ( Λ ETC ) 2 -effect - Λ IR : (m constituent ) Δ qq ~ <qq> generalising Politzer OPE Solve self-consistency condensate eqn OPE extension 1 1 4 g 2 / A / = q − B q + of pole mass q 4 m = B A - ’10: Λ IR : = m H m 1/(1+ γ * ) O( Λ ETC γ * /(1+ γ * ) ) agrees depending on value γ * Del Debbio, RZ Sep’10

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend