opto electronic characterization of perovskite thin films
play

Opto-electronic Characterization of Perovskite Thin Films & Solar - PowerPoint PPT Presentation

Opto-electronic Characterization of Perovskite Thin Films & Solar Cells Arman Mahboubi Soufiani Supervisors: Prof. Martin Green Prof. Gavin Conibeer Dr. Anita Ho-Baillie Dr. Murad Tayebjee 22 nd June 2017 Outline Introduction to


  1. Opto-electronic Characterization of Perovskite Thin Films & Solar Cells Arman Mahboubi Soufiani Supervisors: Prof. Martin Green Prof. Gavin Conibeer Dr. Anita Ho-Baillie Dr. Murad Tayebjee 22 nd June 2017

  2. Outline • Introduction to organic-inorganic metal halide perovskite semiconductors used in optoelectronic devices, • Development of luminescence imaging technique for perovskite solar cells :  Investigation of the light stability of perovskite solar cells, • Investigate the excitonic characteristics of perovskites:  Excitonic binding energy ( Ry * ) and reduced mass ( m * )  Impact of:  Microstructure,  Polarons,

  3. Introduction Organic-inorganic metal halide perovskite semiconductors: • General formula ABX 3 : + , H 2 N-CH=NH 2 + , Cs + , Rb + ; B = Pb 2+ ,Sn 2+ ; X = I - , Br - ; A = CH 3 NH 3 • Applications: 1  Photo-detectors,  Light-emitting diodes,  Photovoltaics, 1 Martin Green et al, Nat. Photonics ( 2014 )

  4. Introduction Organic-inorganic metal halide perovskite semiconductors: • General formula ABX 3 : + , H 2 N-CH=NH 2 + , Cs + , Rb + ; B = Pb 2+ ,Sn 2+ ; X = I - , Br - ; A = CH 3 NH 3 • Applications:  Photo-detectors,  Light-emitting diodes,  Photovoltaics, o Pros:  Bandgap tunability 2 , 2 Eva Unger et al, Material Chemistry A ( 2017 )

  5. Introduction Organic-inorganic metal halide perovskite semiconductors: • General formula ABX 3 : + , H 2 N-CH=NH 2 + , Cs + , Rb + ; B = Pb 2+ ,Sn 2+ ; X = I - , Br - ; A = CH 3 NH 3 • Applications:  Photo-detectors,  Light-emitting diodes,  Photovoltaics, o Pros:  Bandgap tunability,  High absorption coefficient 1 , 1 Martin Green et al, Nat. Photonics ( 2014 )

  6. Introduction Organic-inorganic metal halide perovskite semiconductors: • General formula ABX 3 : + , H 2 N-CH=NH 2 + , Cs + , Rb + ; B = Pb 2+ ,Sn 2+ ; X = I - , Br - ; A = CH 3 NH 3 • Applications:  Photo-detectors,  Light-emitting diodes,  Photovoltaics, o Pros:  Bandgap tunability,  High absorption coefficient 1 ,  Long charge-carrier diffusion length (> 175 µm in single crystal) 3 3 Qingfeng Dong et al, Science ( 2015 )

  7. Introduction Organic-inorganic metal halide perovskite semiconductors: • General formula ABX 3 : + , H 2 N-CH=NH 2 + , Cs + , Rb + ; B = Pb 2+ ,Sn 2+ ; X = I - , Br - ; A = CH 3 NH 3 • Applications:  Photo-detectors,  Light-emitting diodes,  Photovoltaics, o Pros:  Bandgap tunability,  High absorption coefficient,  Long charge-carrier diffusion length (> 175 µm in single crystal)  Low exciton binding energy,

  8. Introduction Organic-inorganic metal halide perovskite semiconductors: • General formula ABX 3 : + , H 2 N-CH=NH 2 + , Cs + , Rb + ; B = Pb 2+ ,Sn 2+ ; X = I - , Br - ; A = CH 3 NH 3 • Applications:  Photo-detectors,  Light-emitting diodes,  Photovoltaics, o Cons:  Charge-carrier non-radiative recombination losses 4 , Polycrystalline perovskite ~ 10 15 -10 17 cm -3 CIGS ~ 10 13 cm -3 Single crystal perovskite ~ 10 9 -10 12 cm -3 4 Samuel Stranks , ACS Energy Letters ( 2017 )

  9. Introduction Organic-inorganic metal halide perovskite semiconductors: • General formula ABX 3 : + , H 2 N-CH=NH 2 + , Cs + , Rb + ; B = Pb 2+ ,Sn 2+ ; X = I - , Br - ; A = CH 3 NH 3 • Applications:  Photo-detectors,  Light-emitting diodes,  Photovoltaics, o Cons:  Charge-carrier non-radiative recombination losses,  Long-term stability (light, temperature and moisture) 5 , 5 Eperon et al, Energy & Environ. Sci. ( 2014 )

  10. Introduction Organic-inorganic metal halide perovskite semiconductors: • General formula ABX 3 : + , H 2 N-CH=NH 2 + , Cs + , Rb + ; B = Pb 2+ ,Sn 2+ ; X = I - , Br - ; A = CH 3 NH 3 • Applications:  Photo-detectors,  Light-emitting diodes,  Photovoltaics, o Cons:  Charge-carrier non-radiative recombination losses,  Long-term stability (light, temperature and moisture) 5 ,  Photo-current hysteresis in J - V (voltage range, sweep rate and sweep direction) 6 , 6 Snaith et al, J. Phys. Chem. Letters ( 2014 )

  11. Introduction Organic-inorganic metal halide perovskite semiconductors: • General formula ABX 3 : + , H 2 N-CH=NH 2 + , Cs + , Rb + ; B = Pb 2+ ,Sn 2+ ; X = I - , Br - ; A = CH 3 NH 3 • Applications:  Photo-detectors,  Light-emitting diodes,  Photovoltaics, 7 7 Green & Ho-Baillie , ACS Energy Letters ( 2017 )

  12. Luminescence Imaging Studies • Photoluminescence (PL) and electroluminescence (EL) imaging have been widely and successfully being used in the silicon PV community. PL Image EL Image R s Image [ Ω .cm 2 ] [a.u] [a.u]

  13. Luminescence Imaging Studies • Photoluminescence (PL) and electroluminescence (EL) imaging have been widely and successfully being used in the silicon PV community.

  14. Luminescence Imaging Studies • Photoluminescence (PL) and electroluminescence (EL) imaging has been widely and successfully being used in the silicon PV community. • Luminescence imaging speeds up reliable characterization and inspection of solar cell. • For the first time, the validity of the Planck’s generalized emission law was investigated for perovskite solar cells through PL and EL imaging. 8 • The impact of pre-treatment of the device such as light-soaking was examined on the Planck’s law. 8 • Degradation in dark investigated and J-V performance was assessed using imaging. 9 • Luminescence imaging is also used to investigate the: 10  Immediate device response to light current-voltage and light-soaking measurements.  Long-term device response to light current-voltage and light-soaking measurements. 8 Ziv Hameiri, Arman Mahboubi Soufiani et al , PIP 23 ,1697 ( 2015 ) 9 Arman Mahboubi Soufiani et al , JAP 120 , 035702 ( 2016 ) 10 Arman Mahboubi Soufiani et al , Adv. Energy Mat. 7 , 1602111 ( 2016 )

  15. Luminescence Imaging Measurement Setup • Excitation source: 635 nm light emitting diode (LED). • Detection system: Silicon charge-coupled device (CCD) camera with 100 milliseconds resolution. • LED tail spectrum is filtered out using SP filters. • Reflection from the device is filtered out using LP filters at the detection point.  PL at open-circuit condition : PL OC  PL at short-circuit condition : PL SC  EL at terminal voltage bias of X : EL X

  16. Device Structure • Planar CH 3 NH 3 PbI 3 based solar cells fabricated via gas-assisted technique. 10 • c-TiO 2 as the electron selective and Spiro-OMeTAD as the hole selective contacts. • Device active area ≈ 8 x 8 mm 2 Mask • Aperture Diameter = 4.5 mm 10 Arman Mahboubi Soufiani et al, Adv. Energy Mat. 7 , 1602111 (2016)

  17. Effect of Prolonged Illumination 21 a EL (Pristine) b a 18 -2 ) Current Density (mA  cm 15 12 a.u. Scan 1 9 Scan 2 Scan 3 Scan 4 6 Scan 5 Scan 6 1 mm 3 Scan 7 Scan 8 0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Voltage (V) 10 Arman Mahboubi Soufiani et al, Adv. Energy Mat. 7 , 1602111 (2016)

  18. Initial Observations after I-V Measurements: EL and PL OC a c d EL Ratio EL (Pristine) EL (I-V) a.u. a.u. a.u. 1 mm   V     j ( E ) EQE ( E ) exp   em PV   V th E :  Energy : EL intensity em Thermal voltage EQE : V : Photovoltaic external quantum efficiency PV th V : Junction voltage j 10 Arman Mahboubi Soufiani et al, Adv. Energy Mat. 7 , 1602111 (2016)

  19. Initial Observations after I-V Measurements: EL and PL OC a c d EL Ratio EL (Pristine) EL (I-V) a.u. a.u. a.u. 1 mm g e PL OC (Pristine) f PL OC (I-V) PL OC Ratio a.u. a.u. a.u. 10 Arman Mahboubi Soufiani et al, Adv. Energy Mat. 7 , 1602111 (2016)

  20. Initial Observations after I-V Measurements: EL and PL SC EL 1.05V PL SC 4250 3500 c a b 4000 3250 a.u. a.u. PL SC Intensity (a.u.) EL Intensity (a.u.) 3750 3000 3500 2750 3250 2500 1 mm 1 mm 3000 2250 -100 -50 0 50 100 Pixel 10 Arman Mahboubi Soufiani et al, Adv. Energy Mat. 7 , 1602111 (2016)

  21. Light-soaked Bilayers: PL OC 10 Arman Mahboubi Soufiani et al, Adv. Energy Mat. 7 , 1602111 (2016)

  22. Immediate Observations after I-V Measurements • Series resistance (interfacial): Improved. • Bulk non-radiative recombination: Possibly Reduced. • Front surface non-radiative recombination: Increased. • Back surface non-radiative recombination: Possibly Increased? 10 Arman Mahboubi Soufiani et al, Adv. Energy Mat. 7 , 1602111 (2016)

  23. Long-term Evolution of EL

  24. Long-term Evolution of PL OC 10 Arman Mahboubi Soufiani et al, Adv. Energy Mat. 7 , 1602111 (2016)

  25. Light-soaking at Open-circuit MAPbI 3 4 10 c-TiO 2 /MAPbI 3 MAPbI 3 /Spiro Occurence Frequency (110) Full Device 3 10 Intensity (a.u.) 2 10 1 10 0 10 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 1000 10000 Angle (2  ) PL Intensity (a.u.) 10 Arman Mahboubi Soufiani et al, Adv. Energy Mat. 7 , 1602111 (2016)

  26. Light-soaking at Open-circuit MAPbI 3 4 10 c-TiO 2 /MAPbI 3 MAPbI 3 /Spiro Occurence Frequency (110) Full Device 3 10 Intensity (a.u.) 2 10 1 10 0 10 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 1000 10000 Angle (2  ) PL Intensity (a.u.) 10 Arman Mahboubi Soufiani et al, Adv. Energy Mat. 7 , 1602111 (2016)

  27. Proposed Mechanism a b c d e f

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend