laser crystallised thin film polycrystalline silicon
play

Laser-Crystallised Thin-Film Polycrystalline Silicon Solar Cells - PowerPoint PPT Presentation

Laser-Crystallised Thin-Film Polycrystalline Silicon Solar Cells Jonathon Dore SPREE Research Seminar - 27th June, 2013 Contents Introduction motivation for thin-film Thin-film PV technologies Diode laser crystallised thin-film


  1. Laser-Crystallised Thin-Film Polycrystalline Silicon Solar Cells Jonathon Dore SPREE Research Seminar - 27th June, 2013

  2. Contents Introduction – motivation for thin-film  Thin-film PV technologies  Diode laser crystallised thin-film pc-Si  – Material and device preparation – Intermediate layers – Stability – Other current work – Near-term priorities for future work – Long-term priorities for future work

  3. Contents Introduction – motivation for thin-film  Thin-film PV technologies  Diode laser crystallised thin-film pc-Si  – Material and device preparation – Intermediate layers – Stability – Other current work – Near-term priorities for future work – Long-term priorities for future work

  4. 1. Introduction GTM Research

  5. Contents Introduction – motivation for thin-film  Thin-film PV technologies  Diode laser crystallised thin-film pc-Si  – Material and device preparation – Intermediate layers – Stability – Other current work – Near-term priorities for future work – Long-term priorities for future work

  6. 2. Thin-Film PV Technologies Commercial  – CdTe – CIGS – a-Si/µc-Si Research  – CZTS – OPV – Thin crystalline silicon  Wafer transfer  Thin polycrystalline

  7. 3. Thin Polycrystalline Si Solid Phase  – SPC – AIC Liquid Phase  – ZMR – EBC – LC  UV  Visible  IR

  8. Contents Introduction – motivation for thin-film  Thin-film PV technologies  Diode laser crystallised thin-film pc-Si  – Material and device preparation – Intermediate layers – Stability – Other current work – Near-term priorities for future work – Long-term priorities for future work

  9. Contents Introduction – motivation for thin-film  Thin-film PV technologies  Diode laser crystallised thin-film pc-Si  – Material and device preparation – Intermediate layers – Stability – Other current work – Near-term priorities for future work – Long-term priorities for future work

  10. 4. Material Preparation 808 nm CW LIMO diode laser 12 mm x 170 µm H H H H H H diffused n+ undoped a-Si p- poly-Si ~10 µm B-doped Intermediate layer ~150 nm Glass 3 mm 5x5 cm 2

  11. 5. Grain structure Many Σ 3 twin boundaries  Defect density < 5e7 cm -2  Mobility of 300-450 at ~1e16 cm -3  30 nm Optical microscope TEM

  12. 6. Device Fabrication n contact pad p contact pad Aluminium Resist n+ Cell area = 1 cm 2 p- Intermediate layer Glass

  13. 7. Light IV

  14. 8. Improvement path Record Efficiency [%] 10 11 12 6 7 8 9 Jul-2011 Oct-2011 Jan-2012 Apr-2012 Jul-2012 Oct-2012 Jan-2013 Apr-2013 Jul-2013

  15. 8. Improvement path Record Efficiency [%] 10 11 12 6 7 8 9 Jul-2011 First devices with SiO x IL Oct-2011 Jan-2012 Apr-2012 Jul-2012 Oct-2012 Jan-2013 Apr-2013 Jul-2013

  16. 8. Improvement path Record Efficiency [%] 10 11 12 6 7 8 9 Jul-2011 First devices with SiO x IL Oct-2011 SiO x /SiC x / SiO x IL Jan-2012 Apr-2012 Jul-2012 Oct-2012 Jan-2013 Apr-2013 Jul-2013

  17. 8. Improvement path Record Efficiency [%] 10 11 12 6 7 8 9 Jul-2011 First devices with SiO x IL Oct-2011 SiO x /SiC x / SiO x IL Jan-2012 Apr-2012 SiO x IL SiO x /SiN x / Jul-2012 Oct-2012 Jan-2013 Apr-2013 Jul-2013

  18. 8. Improvement path 12 First devices with SiO x IL 11 SiO x /SiN x / Record Efficiency [%] SiO x IL 10 SiO x /SiC x / SiO x IL 9 improved 8 SiO x /SiN x / SiO x IL; 7 Rear texture 6 Jul-2011 Oct-2011 Jan-2012 Apr-2012 Jul-2012 Oct-2012 Jan-2013 Apr-2013 Jul-2013

  19. Contents Introduction – motivation for thin-film  Thin-film PV technologies  Diode laser crystallised thin-film pc-Si  – Material and device preparation – Intermediate layers – Stability – Other current work – Near-term priorities for future work – Long-term priorities for future work

  20. 10. Intermediate Layer n contact pad p contact pad Aluminium Resist n+ Cell area = 1 cm 2 p- Intermediate layer Glass

  21. 10. Intermediate Layer  Wetting layer  Dopant source  Contamination barrier  Stable > 1414C  Transparent anti-reflection coating (ARC)  Passivation layer Intermediate layer

  22. 11. Materials of Interest  SiC x  SiN x  SiO x  Layers deposited by RF sputtering or PECVD  10-200 nm thick  Either alone or in stacks

  23. Intermediate Layer  Wetting layer  Dopant source  Contamination barrier  Stable > 1414C  Transparent anti-reflection coating (ARC)  Passivation layer Intermediate layer

  24. 12. Wetting and crystallisation Int. layer Process range  Laser energy None 13 J/cm² SiO x 194 J/cm² SiN x 220 J/cm² SiO x /SiC x stack 246 J/cm² Too low Too high Just right (nc regions) (dewetting)

  25. 13. Wetting and crystallisation Int. layer Process range  Laser energy None 13 J/cm² SiO x 194 J/cm² SiN x 220 J/cm² SiO x /SiC x stack 246 J/cm² • SiN x layers result in pinholes in Si at high laser energies Transmission micrograph

  26. Intermediate Layer  Wetting layer  Dopant source  Contamination barrier  Stable > 1414C  Transparent anti-reflection coating (ARC)  Passivation layer Intermediate layer

  27. 14. Dopant source undoped a-Si p- poly-Si B B B B B B B-doped Intermediate layer SiO x /SiN x /SiO x stack Glass 5x5 cm 2

  28. 15. Dopant source  Uniform region created during molten phase  p+ region at interface? 1.E+20 1.E+19 B conc. (cm-3) 80nm SiOx lowly doped 1.E+18 Si marker (arbitrary units) 1.E+17 IL/Glass 1.E+16 Silicon 1.E+15 6 7 8 9 Depth (µm)

  29. 16. Dopant source  Spreading resistance shows no p+  p+ region at interface?  Inversion layer?

  30. Intermediate Layer  Wetting layer  Dopant source  Contamination barrier  Stable > 1414C  Transparent anti-reflection coating (ARC)  Passivation layer Intermediate layer

  31. 17. Contamination Barrier Problem is blocking B from glass!  SiO x best barrier  Can use SiO x /SiC x or SiO x /SiN x stacks  1000.0 Sheet conductance (mS) 100.0 10.0 1.0 0.1 No IL SiOx SiOx SiOx SiNx SiCx SiCx (10nm) (80nm) (200nm) (80nm) (14nm) (140nm)

  32. 18. Contamination Barrier • Iron can also diffuse from glass • Iron found at silicon grain boundary when no IL used • No iron when SiOx IL used 1.E+18 1.E+18 1.E+18 Crystal grain, no IL Grain boundary, no IL Fe conc. (cm-3) Fe conc. (cm-3) Fe conc. (cm-3) 1.E+17 1.E+17 1.E+17 Grain boundary, SiOx IL 1.E+16 1.E+16 1.E+16 1.E+15 1.E+15 1.E+15 IL/Glass IL/Glass IL/Glass 1.E+14 1.E+14 1.E+14 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 9 9 9 Depth (µm) Depth (µm) Depth (µm) 32

  33. Intermediate Layer  Wetting layer  Dopant source  Contamination barrier  Stable > 1414C  Transparent anti-reflection coating (ARC)  Passivation layer Intermediate layer

  34. 19. Stability • Thick SiC x or SiN x layers cause wrinkling at the glass surface • Visible in reflection micrographs at IL interface viewed through the glass 80nm SiN x 140nm SiC x 80nm SiO x 14nm SiC x No IL

  35. 20. Stability Nitrogen from SiN x layer diffuses into Si during crystallisation  N conc in Si when SiC x and SiO x used likely from atmosphere  No excess C from SiC x or O from SiO x 

  36. Intermediate Layer  Wetting layer  Dopant source  Contamination barrier  Stable > 1414C  Transparent anti-reflection coating (ARC)  Passivation layer Intermediate layer

  37. 21. Transparent ARC 80 SiCx (47 nm, n=2.9) SiCx (14 nm, n=2.9) Absorption (%) 60 SiNx (80 nm, n=2.1) SiOx (70 nm, n=1.5) 40 BSG (n=1.5) 20 0 300 500 700 900 1100 Wavelength (nm)

  38. 22. Transparent ARC 80 SiCx (47 nm, n=2.9) SiCx (14 nm, n=2.9) Absorption (%) 60 SiNx (80 nm, n=2.1) SiOx (70 nm, n=1.5) 40 BSG (n=1.5) SiNx (50 nm reactively sputtered , n=2.0) 20 0 300 500 700 900 1100 Wavelength (nm)

  39. Intermediate Layer  Wetting layer  Dopant source  Contamination barrier  Stable > 1414C  Transparent anti-reflection coating (ARC)  Passivation layer Intermediate layer

  40. 23. Passivation Layer Single- and double-layer stacks  Silicon IL Glass 20 nm SiC x (n=2.9) 70 nm SiN x (n=2.1) 80nm SiO x (n ≈ 1.5 ) 80nm SiO x 80nm SiO x

  41. 24. Passivation Layer Poor front  surface for SiO x /SiC x

  42. 25. Passivation Layer triple-layer stacks  15 nm SiO x 15 nm SiO x 20 nm SiC x 70 nm SiN x 80nm SiO x 80nm SiO x

  43. 26. Passivation Layer Surface SiOx  improves IQE ONO still not  ideal

  44. 26. Passivation Layer Surface SiOx  improves IQE ONO still not  ideal Optimised ONO  (with reactive sputtering) better

  45. 26. Passivation Layer

  46. Contents Introduction – motivation for thin-film  Thin-film PV technologies  Diode laser crystallised thin-film pc-Si  – Material and device preparation – Intermediate layers – Stability – Other current work – Near-term priorities for future work – Long-term priorities for future work

  47. 27. Stability J SC V OC FF η mA/cm 2 mV % % Baked 27.6 585 72.4 11.7

  48. 27. Stability J SC V OC FF η mA/cm 2 mV % % Baked 27.6 585 72.4 11.7 Degraded 27.7 572 62.9 10.0

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend