optimal receiver for the awgn channel
play

Optimal Receiver for the AWGN Channel Saravanan Vijayakumaran - PowerPoint PPT Presentation

Optimal Receiver for the AWGN Channel Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay September 23, 2013 1 / 20 Additive White Gaussian Noise Channel AWGN s ( t ) y ( t )


  1. Optimal Receiver for the AWGN Channel Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay September 23, 2013 1 / 20

  2. Additive White Gaussian Noise Channel AWGN s ( t ) y ( t ) Channel y ( t ) = s ( t ) + n ( t ) s ( t ) Transmitted Signal y ( t ) Received Signal n ( t ) White Gaussian Noise S n ( f ) = N 0 2 = σ 2 R n ( τ ) = σ 2 δ ( τ ) 2 / 20

  3. M -ary Signaling in AWGN Channel • One of M continuous-time signals s 1 ( t ) , . . . , s M ( t ) is sent • The received signal is the transmitted signal corrupted by AWGN • M hypotheses with prior probabilities π i , i = 1 , . . . , M : y ( t ) = s 1 ( t ) + n ( t ) H 1 : y ( t ) = s 2 ( t ) + n ( t ) H 2 . . . . . . H M : y ( t ) = s M ( t ) + n ( t ) • Random variables are easier to handle than random processes • We derive an equivalent M -ary hypothesis testing problem involving only random vectors 3 / 20

  4. Restriction to Signal Space is Optimal Theorem For the M-ary hypothesis testing given by H 1 : y ( t ) = s 1 ( t ) + n ( t ) . . . . . . H M : y ( t ) = s M ( t ) + n ( t ) there is no loss in detection performance by using the optimal decision rule for the following M-ary hypothesis testing problem H 1 : Y = s 1 + N . . . . . . H M : Y = s M + N where Y , s i and N are the projections of y ( t ) , s i ( t ) and n ( t ) respectively onto the signal space spanned by { s i ( t ) } . 4 / 20

  5. Projection of Signals onto Signal Space • Consider an orthonormal basis { ψ i ( t ) | i = 1 , . . . , K } for the space spanned by { s i ( t ) | i = 1 , . . . , M } • Projection of s i ( t ) onto the signal space is � T � s i = � s i , ψ 1 � · · · � s i , ψ K � ψ 1 ( t ) � s i , 1 × ψ 2 ( t ) � s i , 2 × . . . . . . . . . = s i s i ( t ) ψ K − 1 ( t ) � s i , K − 1 × ψ K ( t ) � s i , K × 5 / 20

  6. Projection of Observed Signal onto Signal Space • Projection of y ( t ) onto the signal space is � T � Y = � y , ψ 1 � · · · � y , ψ K � ψ 1 ( t ) � y 1 × ψ 2 ( t ) � y 2 × . . . . . . . . . = y y ( t ) ψ K − 1 ( t ) � y K − 1 × ψ K ( t ) � × y K 6 / 20

  7. Projection of Noise onto Signal Space • Projection of n ( t ) onto the signal space is � T � N = � n , ψ 1 � · · · � n , ψ K � ψ 1 ( t ) � × N 1 ψ 2 ( t ) � × N 2 . . . . . . . . . n ( t ) = N ψ K − 1 ( t ) � × N K − 1 ψ K ( t ) � × N K 7 / 20

  8. Proof of Theorem � T � • Y = � y , ψ 1 � · · · � y , ψ K � • Component of y ( t ) orthogonal to the signal space is K y ⊥ ( t ) = y ( t ) − � � y , ψ i � ψ i ( t ) i = 1 • y ( t ) is equivalent to ( Y , y ⊥ ( t )) • We claim that y ⊥ ( t ) is an irrelevant statistic K y ⊥ ( t ) � = y ( t ) − � y , ψ i � ψ i ( t ) i = 1 K � = s i ( t ) + n ( t ) − � s i + n , ψ j � ψ j ( t ) j = 1 K � � n , ψ j � ψ j ( t ) = n ⊥ ( t ) = n ( t ) − j = 1 where n ⊥ ( t ) is the component of n ( t ) orthogonal to the signal space. • n ⊥ ( t ) is independent of which s i ( t ) was transmitted which makes y ⊥ ( t ) an irrelevant statistic. 8 / 20

  9. M -ary Signaling in AWGN Channel • M hypotheses with prior probabilities π i , i = 1 , . . . , M H 1 : Y = s 1 + N . . . . . . H M : Y = s M + N � T � Y = � y , ψ 1 � · · · � y , ψ K � � T � s i = � s i , ψ 1 � · · · � s i , ψ K � � T N = � � n , ψ 1 � · · · � n , ψ K � • N ∼ N ( m , C ) where m = 0 and C = σ 2 I cov ( � n , ψ 1 � , � n , ψ 2 � ) = σ 2 � ψ 1 , ψ 2 � . 9 / 20

  10. Optimal Receiver for the AWGN Channel Theorem (MPE Decision Rule) The MPE decision rule for M-ary signaling in AWGN channel is given by � y − s i � 2 − 2 σ 2 log π i δ MPE ( y ) = argmin 1 ≤ i ≤ M � y , s i � − � s i � 2 + σ 2 log π i = argmax 2 1 ≤ i ≤ M Proof δ MPE ( y ) = argmax π i p i ( y ) 1 ≤ i ≤ M −� y − s i � 2 � � = argmax π i exp 2 σ 2 1 ≤ i ≤ M 10 / 20

  11. MPE Decision Rule s 1 − � s 1 � 2 + σ 2 log π 1 2 × + − � s 2 � 2 + σ 2 log π 2 s 2 2 × + . . . . . . y T argmax � s M − 1 � 2 s M − 1 + σ 2 log π M − 1 − 2 × + − � s M � 2 + σ 2 log π M s M 2 × + 11 / 20

  12. Continuous-Time Version of MPE Rule • Discrete-time version � y , s i � − � s i � 2 + σ 2 log π i δ MPE ( y ) = argmax 2 1 ≤ i ≤ M • Continuous-time version � y , s i � − � s i � 2 + σ 2 log π i δ MPE ( y ) = argmax 2 1 ≤ i ≤ M 12 / 20

  13. MPE Decision Rule Example s 1 ( t ) s 2 ( t ) s 3 ( t ) 2 2 1 2 3 t 1 2 3 t 1 t -2 s 4 ( t ) y ( t ) 2 2 1 1 2 3 t 1 2 3 t Let π 1 = π 2 = 1 3 , π 3 = π 4 = 1 6 , σ 2 = 1 , and log 2 = 0 . 69 . 13 / 20

  14. ML Receiver for the AWGN Channel Theorem (ML Decision Rule) The ML decision rule for M-ary signaling in AWGN channel is given by � y − s i � 2 δ ML ( y ) = argmin 1 ≤ i ≤ M � y , s i � − � s i � 2 = argmax 2 1 ≤ i ≤ M Proof δ ML ( y ) = argmax p i ( y ) 1 ≤ i ≤ M −� y − s i � 2 � � = argmax exp 2 σ 2 1 ≤ i ≤ M 14 / 20

  15. ML Decision Rule s 1 − � s 1 � 2 2 × + − � s 2 � 2 s 2 2 × + . . . . . . y T argmax � s M − 1 � 2 s M − 1 − 2 × + − � s M � 2 s M 2 × + 15 / 20

  16. ML Decision Rule − s 1 + �·� 2 − s 2 + �·� 2 . . . . . . y argmin − s M − 1 + �·� 2 − s M + �·� 2 16 / 20

  17. Continuous-Time Version of ML Rule • Discrete-time version � y , s i � − � s i � 2 δ ML ( y ) = argmax 2 1 ≤ i ≤ M • Continuous-time version � y , s i � − � s i � 2 δ ML ( y ) = argmax 2 1 ≤ i ≤ M 17 / 20

  18. ML Decision Rule Example s 1 ( t ) s 2 ( t ) s 3 ( t ) 2 2 1 2 3 t 1 2 3 t 1 t -2 s 4 ( t ) y ( t ) 2 2 1 2 3 t 1 2 3 t 18 / 20

  19. ML Decision Rule for Antipodal Signaling s 1 ( t ) s 2 ( t ) A T t T t - A � y , s i � − � s i � 2 δ ML ( y ) = argmax = argmax � y , s i � 2 1 ≤ i ≤ 2 1 ≤ i ≤ 2 δ ML ( y ) = 1 ⇐ ⇒ � y , s 1 � ≥ � y , s 2 � ⇐ ⇒ � y , s 1 � ≥ 0 � T � y , s 1 � = y ( τ ) s 1 ( τ ) d τ = ( y ⋆ s MF )( T ) 0 where s MF ( t ) = s 1 ( T − t ) is the matched filter. 19 / 20

  20. Thanks for your attention 20 / 20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend