optimal receiver for the awgn channel
play

Optimal Receiver for the AWGN Channel Saravanan Vijayakumaran - PowerPoint PPT Presentation

Optimal Receiver for the AWGN Channel Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay August 31, 2012 1 / 50 Additive White Gaussian Noise Channel AWGN s ( t ) y ( t )


  1. Optimal Receiver for the AWGN Channel Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay August 31, 2012 1 / 50

  2. Additive White Gaussian Noise Channel AWGN s ( t ) y ( t ) Channel y ( t ) = s ( t ) + n ( t ) s ( t ) Transmitted Signal y ( t ) Received Signal n ( t ) White Gaussian Noise S n ( f ) = N 0 2 = σ 2 R n ( τ ) = σ 2 δ ( τ ) 2 / 50

  3. M -ary Signaling in AWGN Channel • One of M continuous-time signals s 1 ( t ) , . . . , s M ( t ) is sent • The received signal is the transmitted signal corrupted by AWGN • M hypotheses with prior probabilities π i , i = 1 , . . . , M H 1 : y ( t ) = s 1 ( t ) + n ( t ) H 2 : y ( t ) = s 2 ( t ) + n ( t ) . . . . . . H M : y ( t ) = s M ( t ) + n ( t ) • Random variables are easier to handle than random processes • We derive an equivalent M -ary hypothesis testing problem involving only random variables 3 / 50

  4. White Gaussian Noise through Correlators • Consider the output of a correlator with WGN input � ∞ Z = n ( t ) u ( t ) dt = � n , u � −∞ where u ( t ) is a deterministic finite-energy signal • Z is a Gaussian random variable • The mean of Z is � ∞ E [ Z ] = E [ n ( t )] u ( t ) dt = 0 −∞ • The variance of Z is var [ Z ] = σ 2 � u � 2 4 / 50

  5. White Gaussian Noise through Correlators Proposition Let u 1 ( t ) and u 2 ( t ) be linearly independent finite-energy signals and let n ( t ) be WGN with PSD S n ( f ) = σ 2 . Then � n , u 1 � and � n , u 2 � are jointly Gaussian with covariance cov ( � n , u 1 � , � n , u 2 � ) = σ 2 � u 1 , u 2 � . Proof To prove that � n , u 1 � and � n , u 2 � are jointly Gaussian, consider a non-trivial linear combination a � n , u 1 � + b � n , u 2 � � a � n , u 1 � + b � n , u 2 � = n ( t ) [ au 1 ( t ) + bu 2 ( t )] dt 5 / 50

  6. White Gaussian Noise through Correlators Proof (continued) cov ( � n , u 1 � , � n , u 2 � ) = E [ � n , u 1 �� n , u 2 � ] �� � � = E n ( t ) u 1 ( t ) dt n ( s ) u 2 ( s ) ds � � = u 1 ( t ) u 2 ( s ) E [ n ( t ) n ( s )] dt ds � � u 1 ( t ) u 2 ( s ) σ 2 δ ( t − s ) dt ds = � σ 2 = u 1 ( t ) u 2 ( t ) dt σ 2 � u 1 , u 2 � = If u 1 ( t ) and u 2 ( t ) are orthogonal, � n , u 1 � and � n , u 2 � are independent. 6 / 50

  7. Restriction to Signal Space is Optimal Theorem For the M-ary hypothesis testing given by H 1 : y ( t ) = s 1 ( t ) + n ( t ) . . . . . . H M : y ( t ) = s M ( t ) + n ( t ) there is no loss in detection performance by using the optimal decision rule for the following M-ary hypothesis testing problem : Y = s 1 + N H 1 . . . . . . H M : Y = s M + N where Y , s i and N are the projections of y ( t ) , s i ( t ) and n ( t ) respectively onto the signal space spanned by { s i ( t ) } . 7 / 50

  8. Projections onto Signal Space • Consider an orthonormal basis { ψ i | i = 1 , . . . , K } for the space spanned by { s i ( t ) | i = 1 , . . . , M } • Projection of s i ( t ) onto the signal space is � T � s i = � s i , ψ 1 � · · · � s i , ψ K � • Projection of n ( t ) onto the signal space is � T � N = � n , ψ 1 � · · · � n , ψ K � • Projection of y ( t ) onto the signal space is � T � Y = � y , ψ 1 � · · · � y , ψ K � • Component of y ( t ) orthogonal to the signal space is K � y ⊥ ( t ) = y ( t ) − � y , ψ i � ψ i ( t ) i = 1 8 / 50

  9. Proof of Theorem y ( t ) is equivalent to ( Y , y ⊥ ( t )) . We will show that y ⊥ ( t ) is an irrelevant statistic. K y ⊥ ( t ) � = y ( t ) − � y , ψ i � ψ i ( t ) i = 1 K � = s i ( t ) + n ( t ) − � s i + n , ψ j � ψ j ( t ) j = 1 K � = n ( t ) − � n , ψ j � ψ j ( t ) j = 1 n ⊥ ( t ) = where n ⊥ ( t ) is the component of n ( t ) orthogonal to the signal space. n ⊥ ( t ) is independent of which s i ( t ) was transmitted 9 / 50

  10. Proof of Theorem To prove y ⊥ ( t ) is irrelevant, it is enough to show that n ⊥ ( t ) is independent of Y . For a given t and k cov ( n ⊥ ( t ) , N k ) E [ n ⊥ ( t ) N k ] =     n   � = E  n ( t ) − N j ψ j ( t )  N k   j = 1 K � = E [ n ( t ) N k ] − E [ N j N k ] ψ j ( t ) j = 1 σ 2 ψ k ( t ) − σ 2 ψ k ( t ) = 0 = 10 / 50

  11. M -ary Signaling in AWGN Channel • M hypotheses with prior probabilities π i , i = 1 , . . . , M H 1 : Y = s 1 + N . . . . . . H M : Y = s M + N � T � Y = � y , ψ 1 � · · · � y , ψ K � � T � s i = � s i , ψ 1 � · · · � s i , ψ K � � T � N = � n , ψ 1 � · · · � n , ψ K � • N ∼ N ( m , C ) where m = 0 and C = σ 2 I cov ( � n , ψ 1 � , � n , ψ 2 � ) = σ 2 � ψ 1 , ψ 2 � . 11 / 50

  12. Optimal Receiver for the AWGN Channel Theorem (MPE Decision Rule) The MPE decision rule for M-ary signaling in AWGN channel is given by 1 ≤ i ≤ M � y − s i � 2 − 2 σ 2 log π i δ MPE ( y ) = arg min 1 ≤ i ≤ M � y , s i � − � s i � 2 + σ 2 log π i = arg max 2 Proof δ MPE ( y ) = arg max 1 ≤ i ≤ M π i p i ( y ) −� y − s i � 2 � � = arg max 1 ≤ i ≤ M π i exp 2 σ 2 12 / 50

  13. Vector Representation of Real Signal Waveforms ψ 1 ( t ) � s i , 1 × ψ 2 ( t ) s i , 2 × � . . . . . . . . . = s i s i ( t ) ψ K − 1 ( t ) � s i , K − 1 × ψ K ( t ) � s i , K × 13 / 50

  14. Vector Representation of the Real Received Signal ψ 1 ( t ) � y 1 × ψ 2 ( t ) × � y 2 . . . . . . . . . = y y ( t ) ψ K − 1 ( t ) � y K − 1 × ψ K ( t ) � × y K 14 / 50

  15. MPE Decision Rule − � s 1 � 2 + σ 2 log π 1 s 1 2 × + − � s 2 � 2 + σ 2 log π 2 s 2 2 × + . . . . . . y T arg max − � s M − 1 � 2 + σ 2 log π M − 1 s M − 1 2 × + − � s M � 2 + σ 2 log π M s M 2 × + 15 / 50

  16. MPE Decision Rule Example s 1 ( t ) s 2 ( t ) s 3 ( t ) 2 2 t 1 2 3 1 2 3 t 1 t -2 s 4 ( t ) y ( t ) 2 2 1 2 3 t 1 2 3 t Let π 1 = π 2 = 1 3 , π 3 = π 4 = 1 6 , σ 2 = 1 , and log 2 = 0 . 69 . 16 / 50

  17. ML Receiver for the AWGN Channel Theorem (ML Decision Rule) The ML decision rule for M-ary signaling in AWGN channel is given by 1 ≤ i ≤ M � y − s i � 2 δ ML ( y ) = arg min 1 ≤ i ≤ M � y , s i � − � s i � 2 = arg max 2 Proof δ ML ( y ) = arg max 1 ≤ i ≤ M p i ( y ) −� y − s i � 2 � � = arg max 1 ≤ i ≤ M exp 2 σ 2 17 / 50

  18. ML Decision Rule − � s 1 � 2 s 1 2 × + − � s 2 � 2 s 2 2 × + . . . . . . y T arg max − � s M − 1 � 2 s M − 1 2 × + − � s M � 2 s M 2 × + 18 / 50

  19. ML Decision Rule − s 1 �·� 2 + − s 2 �·� 2 + . . . . . . y arg min − s M − 1 �·� 2 + − s M �·� 2 + 19 / 50

  20. ML Decision Rule Example s 1 ( t ) s 2 ( t ) s 3 ( t ) 2 2 t 1 2 3 1 2 3 t 1 t -2 s 4 ( t ) y ( t ) 2 2 1 2 3 t 1 2 3 t 20 / 50

  21. Continuous-Time Versions of Optimal Decision Rules • Discrete-time decision rules 1 ≤ i ≤ M � y , s i � − � s i � 2 + σ 2 log π i δ MPE ( y ) = arg max 2 1 ≤ i ≤ M � y , s i � − � s i � 2 δ ML ( y ) = arg max 2 • Continuous-time decision rules 1 ≤ i ≤ M � y , s i � − � s i � 2 + σ 2 log π i δ MPE ( y ) = arg max 2 1 ≤ i ≤ M � y , s i � − � s i � 2 δ ML ( y ) = arg max 2 21 / 50

  22. ML Decision Rule for Antipodal Signaling s 1 ( t ) s 2 ( t ) A t T t T - A 1 ≤ i ≤ 2 � y , s i � − � s i � 2 δ ML ( y ) = arg max = arg max 1 ≤ i ≤ 2 � y , s i � 2 δ ML ( y ) = 1 ⇐ ⇒ � y , s 1 � ≥ � y , s 2 � ⇐ ⇒ � y , s 1 � ≥ 0 � T � y , s 1 � = y ( τ ) s 1 ( τ ) d τ = y ⋆ s MF ( T ) 0 where s MF ( t ) = s 1 ( T − t ) is the matched filter. 22 / 50

  23. Optimal Receiver for Passband Signals Consider M -ary passband signaling over the AWGN channel H i : y p ( t ) = s i , p ( t ) + n p ( t ) , i = 1 , . . . , M where y p ( t ) Real passband received signal s i , p ( t ) Real passband signals n p ( t ) Real passband GN with PSD N 0 2 Passband GN PSD N 0 2 − f c f c f 23 / 50

  24. White Gaussian Noise is an Idealization WGN PSD N 0 2 − f c f c f Infinite Power! Ideal model of passband Gaussian noise Passband GN PSD N 0 2 − f c f c f 24 / 50

  25. Detection using Complex Baseband Representation • M -ary passband signaling over the AWGN channel H i : y p ( t ) = s i , p ( t ) + n p ( t ) , i = 1 , . . . , M where y p ( t ) Real passband received signal s i , p ( t ) Real passband signals n p ( t ) Real passband GN with PSD N 0 2 • The equivalent problem in complex baseband is H i : y ( t ) = s i ( t ) + n ( t ) , i = 1 , . . . , M where y ( t ) Complex envelope of y p ( t ) s i ( t ) Complex envelope of s i , p ( t ) n ( t ) Complex envelope of n p ( t ) 25 / 50

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend