siegel s theorem edge coloring and a holant dichotomy
play

Siegels Theorem, Edge Coloring, and a Holant Dichotomy Tyson - PowerPoint PPT Presentation

Siegels Theorem, Edge Coloring, and a Holant Dichotomy Tyson Williams (University of Wisconsin-Madison) Joint with: Jin-Yi Cai and Heng Guo (University of Wisconsin-Madison) 1 / 41 2 / 41 Finiteness Theorems Theorem (Siegels Theorem)


  1. Tutte Polynomial Definition The Tutte polynomial of an undirected graph G is E ( G ) = ∅ ,  1    xT ( G \ e ; x , y ) e ∈ E ( G ) is a bridge,  T ( G ; x , y ) = yT ( G \ e ; x , y ) e ∈ E ( G ) is a loop,     T ( G \ e ; x , y ) + T ( G / e ; x , y ) otherwise, where G \ e is the graph obtained by deleting e and G / e is the graph obtained by contracting e . 17 / 41

  2. Tutte Polynomial Definition The Tutte polynomial of an undirected graph G is E ( G ) = ∅ ,  1    xT ( G \ e ; x , y ) e ∈ E ( G ) is a bridge,  T ( G ; x , y ) = yT ( G \ e ; x , y ) e ∈ E ( G ) is a loop,     T ( G \ e ; x , y ) + T ( G / e ; x , y ) otherwise, where G \ e is the graph obtained by deleting e and G / e is the graph obtained by contracting e . The chromatic polynomial is χ ( G ; λ ) = ( − 1) | V |− 1 λ T( G ; 1 − λ, 0) . 17 / 41

  3. Tutte Polynomial Dichotomy Theorem (Vertigan) For any x , y ∈ C , the problem of evaluating the Tutte polynomial at ( x , y ) over planar graphs is #P-hard unless ( x − 1)( y − 1) ∈ { 1 , 2 } or ( x , y ) ∈ { (1 , 1) , ( − 1 , − 1) , ( ω, ω 2 ) , ( ω 2 , ω ) } , where ω = e 2 π i / 3 . In each of these exceptional cases, the computation can be done in polynomial time. y 4 3 2 1 x � 2 � 1 1 2 3 4 � 1 � 2 18 / 41

  4. Medial Graph Definition (a) (b) (c) A plane graph (a), its medial graph (c), and the two graphs superimposed (b). 19 / 41

  5. Directed Medial Graph Definition (a) (b) (c) A plane graph (a), its directed medial graph (c), and the two graphs superimposed (b). 20 / 41

  6. Eulerian Graphs and Eulerian Partitions Definition A graph is Eulerian if every vertex has an even degree. 1 21 / 41

  7. Eulerian Graphs and Eulerian Partitions Definition A graph is Eulerian if every vertex has an even degree. 1 A digraph is Eulerian if “in degree” = “out degree” at every vertex. 2 21 / 41

  8. Eulerian Graphs and Eulerian Partitions Definition A graph is Eulerian if every vertex has an even degree. 1 A digraph is Eulerian if “in degree” = “out degree” at every vertex. 2 An Eulerian partition of an Eulerian digraph � G is a partition of the 3 edges of � G such that each part induces an Eulerian digraph. Let π κ ( � G ) be the set of Eulerian partitions of � G into at most κ parts. 21 / 41

  9. Eulerian Graphs and Eulerian Partitions Definition A graph is Eulerian if every vertex has an even degree. 1 A digraph is Eulerian if “in degree” = “out degree” at every vertex. 2 An Eulerian partition of an Eulerian digraph � G is a partition of the 3 edges of � G such that each part induces an Eulerian digraph. Let π κ ( � G ) be the set of Eulerian partitions of � G into at most κ parts. Example with two monochromatic vertices (of degree 4). 21 / 41

  10. Crucial Identity Theorem (Ellis-Monaghan) For a plane graph G, � 2 µ ( c ) , κ T( G ; κ + 1 , κ + 1) = c ∈ π κ ( � G m ) where µ ( c ) is the number of monochromatic vertices in c. 22 / 41

  11. Connection to Holant Then 2 µ ( c ) = Holant( G m ; E ) , � c ∈ π κ ( � G m ) where E  2 if w = x = y = z    1 if w = x � = y = z     E ( w z x y ) = 0 if w = y � = x = z  1 if w = z � = x = y      0 otherwise.  Denote E by � 2 , 1 , 0 , 1 , 0 � . 23 / 41

  12. Connection to Holant Then 2 µ ( c ) = Holant( G m ; E ) , � c ∈ π κ ( � G m ) where E  2 if w = x = y = z    1 if w = x � = y = z     E ( w z x y ) = 0 if w = y � = x = z  1 if w = z � = x = y      0 otherwise.  Denote E by � 2 , 1 , 0 , 1 , 0 � . 23 / 41

  13. Connection to Holant Then 2 µ ( c ) = Holant( G m ; E ) , � c ∈ π κ ( � G m ) where E  2 if w = x = y = z    1 if w = x � = y = z     E ( w z x y ) = 0 if w = y � = x = z  1 if w = z � = x = y      0 otherwise.  Denote E by � 2 , 1 , 0 , 1 , 0 � . 23 / 41

  14. Connection to Holant Then 2 µ ( c ) = Holant( G m ; E ) , � c ∈ π κ ( � G m ) where E  2 if w = x = y = z    1 if w = x � = y = z     E ( w z x y ) = 0 if w = y � = x = z  1 if w = z � = x = y      0 otherwise.  Denote E by � 2 , 1 , 0 , 1 , 0 � . 23 / 41

  15. Connection to Holant Then 2 µ ( c ) = Holant( G m ; E ) , � c ∈ π κ ( � G m ) where E  2 if w = x = y = z    1 if w = x � = y = z     E ( w z x y ) = 0 if w = y � = x = z  1 if w = z � = x = y      0 otherwise.  Denote E by � 2 , 1 , 0 , 1 , 0 � . 23 / 41

  16. #P-hardness of # κ -EdgeColoring Theorem # κ - EdgeColoring is #P-hard over planar κ -regular graphs for κ ≥ 3 . 24 / 41

  17. #P-hardness of # κ -EdgeColoring Theorem # κ - EdgeColoring is #P-hard over planar κ -regular graphs for κ ≥ 3 . Proof for κ = 3 . Reduce from Holant( · ; � 2 , 1 , 0 , 1 , 0 � ) to Holant( · ; AD 3 ) in two steps: polynomial Holant( · ; � 2 , 1 , 0 , 1 , 0 � ) ≤ T Holant( · ; � 0 , 1 , 1 , 0 , 0 � ) ( interpolation ) ≤ T Holant( · ; AD 3 ) (gadget construction) 24 / 41

  18. Gadget Construction Step Holant( G ; � 0 , 1 , 1 , 0 , 0 � ) ≤ T Holant( G ′ ; AD 3 ) AD 3 w z y AD 3 x  0 if w = x = y = z    if w = x � = y = z 1     f ( w z x y ) = � 0 , 1 , 1 , 0 , 0 � = 1 if w = y � = x = z  if w = z � = x = y 0      0 otherwise.  25 / 41

  19. Gadget Construction Step Holant( G ; � 0 , 1 , 1 , 0 , 0 � ) ≤ T Holant( G ′ ; AD 3 ) AD 3 w z y AD 3 x  0 if w = x = y = z    if w = x � = y = z 1     f ( w z x y ) = � 0 , 1 , 1 , 0 , 0 � = 1 if w = y � = x = z  if w = z � = x = y 0      0 otherwise.  25 / 41

  20. Gadget Construction Step Holant( G ; � 0 , 1 , 1 , 0 , 0 � ) ≤ T Holant( G ′ ; AD 3 ) AD 3 w z y AD 3 x  0 if w = x = y = z    if w = x � = y = z 1     f ( w z x y ) = � 0 , 1 , 1 , 0 , 0 � = 1 if w = y � = x = z  if w = z � = x = y 0      0 otherwise.  25 / 41

  21. Gadget Construction Step Holant( G ; � 0 , 1 , 1 , 0 , 0 � ) ≤ T Holant( G ′ ; AD 3 ) AD 3 w z y AD 3 x  0 if w = x = y = z    if w = x � = y = z 1     f ( w z x y ) = � 0 , 1 , 1 , 0 , 0 � = 1 if w = y � = x = z  if w = z � = x = y 0      0 otherwise.  25 / 41

  22. Gadget Construction Step Holant( G ; � 0 , 1 , 1 , 0 , 0 � ) ≤ T Holant( G ′ ; AD 3 ) AD 3 w z y AD 3 x  0 if w = x = y = z    if w = x � = y = z 1     f ( w z x y ) = � 0 , 1 , 1 , 0 , 0 � = 1 if w = y � = x = z  if w = z � = x = y 0      0 otherwise.  25 / 41

  23. Gadget Construction Step Holant( G ; � 0 , 1 , 1 , 0 , 0 � ) ≤ T Holant( G ′ ; AD 3 ) AD 3 w z y AD 3 x  0 if w = x = y = z    if w = x � = y = z 1     f ( w z x y ) = � 0 , 1 , 1 , 0 , 0 � = 1 if w = y � = x = z  if w = z � = x = y 0      0 otherwise.  25 / 41

  24. Gadget Construction Step Holant( G ; � 0 , 1 , 1 , 0 , 0 � ) ≤ T Holant( G ′ ; AD 3 ) AD 3 w z y AD 3 x  0 if w = x = y = z    if w = x � = y = z 1     f ( w z x y ) = � 0 , 1 , 1 , 0 , 0 � = 1 if w = y � = x = z  if w = z � = x = y 0      0 otherwise.  25 / 41

  25. Polynomial Interpolation Step: Recursive Construction Holant( G ; � 2 , 1 , 0 , 1 , 0 � ) ≤ T Holant( G s ; � 0 , 1 , 1 , 0 , 0 � ) N s N 1 N 2 N s +1 Vertices are assigned � 0 , 1 , 1 , 0 , 0 � . 26 / 41

  26. Polynomial Interpolation Step: Recursive Construction Holant( G ; � 2 , 1 , 0 , 1 , 0 � ) ≤ T Holant( G s ; � 0 , 1 , 1 , 0 , 0 � ) N s N 1 N 2 N s +1 Vertices are assigned � 0 , 1 , 1 , 0 , 0 � . Let f s be the function corresponding to N s . Then f s = M s f 0 , where  0 2 0 0 0   1  1 1 0 0 0 0         M = 0 0 0 1 0 and f 0 = 0 .         0 0 1 0 0 1     0 0 0 0 1 0 Obviously f 1 = � 0 , 1 , 1 , 0 , 0 � . 26 / 41

  27. Polynomial Interpolation Step: Eigenvectors and Eigenvalues Spectral decomposition M = P Λ P − 1 , where  1 − 2 0 0 0   2 0 0 0 0  1 1 0 0 0 0 − 1 0 0 0         P = 0 0 1 1 0 and Λ = 0 0 1 0 0 .         0 0 1 − 1 0 0 0 0 − 1 0     0 0 0 0 1 0 0 0 0 1 27 / 41

  28. Polynomial Interpolation Step: Eigenvectors and Eigenvalues Spectral decomposition M = P Λ P − 1 , where  1 − 2 0 0 0   2 0 0 0 0  1 1 0 0 0 0 − 1 0 0 0         P = 0 0 1 1 0 and Λ = 0 0 1 0 0 .         0 0 1 − 1 0 0 0 0 − 1 0     0 0 0 0 1 0 0 0 0 1 Let x = 2 2 s . Then x − 1     x 0 0 0 0 + 1 3 x − 1 0 1 0 0 0    3  f 2 s = P Λ 2 s P − 1 f 0 = P   P − 1 f 0 =   0 0 1 0 0 0 .         0 0 0 1 0 1     0 0 0 0 1 0 27 / 41

  29. Polynomial Interpolation Step: Eigenvectors and Eigenvalues Spectral decomposition M = P Λ P − 1 , where  1 − 2 0 0 0   2 0 0 0 0  1 1 0 0 0 0 − 1 0 0 0         P = 0 0 1 1 0 and Λ = 0 0 1 0 0 .         0 0 1 − 1 0 0 0 0 − 1 0     0 0 0 0 1 0 0 0 0 1 Let x = 2 2 s . Then x − 1     x 0 0 0 0 + 1 3 x − 1 0 1 0 0 0    3  f ( x ) = f 2 s = P Λ 2 s P − 1 f 0 = P   P − 1 f 0 =   0 0 1 0 0 0 .         0 0 0 1 0 1     0 0 0 0 1 0 27 / 41

  30. Polynomial Interpolation Step: Eigenvectors and Eigenvalues Spectral decomposition M = P Λ P − 1 , where  1 − 2 0 0 0   2 0 0 0 0  1 1 0 0 0 0 − 1 0 0 0         P = 0 0 1 1 0 and Λ = 0 0 1 0 0 .         0 0 1 − 1 0 0 0 0 − 1 0     0 0 0 0 1 0 0 0 0 1 Let x = 2 2 s . Then x − 1     x 0 0 0 0 + 1 3 x − 1 0 1 0 0 0    3  f ( x ) = f 2 s = P Λ 2 s P − 1 f 0 = P   P − 1 f 0 =   0 0 1 0 0 0 .         0 0 0 1 0 1     0 0 0 0 1 0 Note f (4) = E = � 2 , 1 , 0 , 1 , 0 � . 27 / 41

  31. Polynomial Interpolation Step: Eigenvectors and Eigenvalues Spectral decomposition M = P Λ P − 1 , where  1 − 2 0 0 0   2 0 0 0 0  1 1 0 0 0 0 − 1 0 0 0         P = 0 0 1 1 0 and Λ = 0 0 1 0 0 .         0 0 1 − 1 0 0 0 0 − 1 0     0 0 0 0 1 0 0 0 0 1 Let x = 2 2 s . Then x − 1     x 0 0 0 0 + 1 3 x − 1 0 1 0 0 0    3  f ( x ) = f 2 s = P Λ 2 s P − 1 f 0 = P   P − 1 f 0 =   0 0 1 0 0 0 .         0 0 0 1 0 1     0 0 0 0 1 0 Note f (4) = E = � 2 , 1 , 0 , 1 , 0 � . (Side note: picking s = 1 so that x = 4 only works when κ = 3.) 27 / 41

  32. Polynomial Interpolation Step: The Interpolation Holant( G ; � 2 , 1 , 0 , 1 , 0 � ) ≤ T Holant( G s ; � 0 , 1 , 1 , 0 , 0 � ) 28 / 41

  33. Polynomial Interpolation Step: The Interpolation Holant( G ; � 2 , 1 , 0 , 1 , 0 � ) = T Holant( G ; f (4)) ≤ T Holant( G ; f ( x )) ≤ T Holant( G s ; � 0 , 1 , 1 , 0 , 0 � ) 28 / 41

  34. Polynomial Interpolation Step: The Interpolation Holant( G ; � 2 , 1 , 0 , 1 , 0 � ) = T Holant( G ; f (4)) ≤ T Holant( G ; f ( x )) ≤ T Holant( G s ; � 0 , 1 , 1 , 0 , 0 � ) If G has n vertices, then p ( x ) = Holant( G ; f ( x )) ∈ Z [ x ] has degree n . 28 / 41

  35. Polynomial Interpolation Step: The Interpolation Holant( G ; � 2 , 1 , 0 , 1 , 0 � ) = T Holant( G ; f (4)) ≤ T Holant( G ; f ( x )) ≤ T Holant( G s ; � 0 , 1 , 1 , 0 , 0 � ) If G has n vertices, then p ( x ) = Holant( G ; f ( x )) ∈ Z [ x ] has degree n . Let G s be the graph obtained by replacing every vertex in G with N s . Then Holant( G 2 s ; � 0 , 1 , 1 , 0 , 0 � ) = p (2 2 s ). 28 / 41

  36. Polynomial Interpolation Step: The Interpolation Holant( G ; � 2 , 1 , 0 , 1 , 0 � ) = T Holant( G ; f (4)) ≤ T Holant( G ; f ( x )) ≤ T Holant( G s ; � 0 , 1 , 1 , 0 , 0 � ) If G has n vertices, then p ( x ) = Holant( G ; f ( x )) ∈ Z [ x ] has degree n . Let G s be the graph obtained by replacing every vertex in G with N s . Then Holant( G 2 s ; � 0 , 1 , 1 , 0 , 0 � ) = p (2 2 s ). Using oracle for Holant( · ; � 0 , 1 , 1 , 0 , 0 � ), evaluate p ( x ) at n + 1 distinct points x = 2 2 s for 0 ≤ s ≤ n . By polynomial interpolation, efficiently compute the coefficients of p ( x ). QED. 28 / 41

  37. Proof Outline for Dichotomy of Holant( · ; � a , b , c � ) For all a , b , c ∈ C , want to show that Holant( · ; � a , b , c � ) is in P or #P-hard. 29 / 41

  38. Proof Outline for Dichotomy of Holant( · ; � a , b , c � ) For all a , b , c ∈ C , want to show that Holant( · ; � a , b , c � ) is in P or #P-hard. Attempt to construct a special arity 1 local constraint using � a , b , c � . 1 Attempt to interpolate all arity 2 local constraints of a certain form, 2 assuming we have the special arity 1 local constraint. Construct a ternary local constraint that we show is #P-hard, 3 assuming we have these arity 2 local constraints. 29 / 41

  39. Proof Outline for Dichotomy of Holant( · ; � a , b , c � ) For all a , b , c ∈ C , want to show that Holant( · ; � a , b , c � ) is in P or #P-hard. Attempt to construct a special arity 1 local constraint using � a , b , c � . 1 Attempt to interpolate all arity 2 local constraints of a certain form, 2 assuming we have the special arity 1 local constraint. Construct a ternary local constraint that we show is #P-hard, 3 assuming we have these arity 2 local constraints. For some a , b , c ∈ C , our attempts fail. In those cases, we either show the problem is in P or 1 prove #P-hardness without the help of additional signatures. 2 29 / 41

  40. edge coloring k=r Eulerian partition directed medial graph parity condition major interpolate results ternary and quaternary resutls Tutte diagonal as state sum tal_color: f(P_0) = 0 check orthogonality condition lattice condition (LC) Puiseux series planar T utte dichotomy only 5 solutions in Z for p(x,y) state sum as Holant problem any arity interpolation LC characterization for cubic polys LC satisfied by Sn or An Galois Gps 3R & 2C roots in x for p(x,y) condition for Sn Galois gp Dedkind's Theorem condition from same norm roots edge coloring k>r hard generic binary interpolation Bobby Fischer gadget planar Eulerian partition hard (tau_color) reducible p(x,y) satisfies LC for y>3 irreducible p(x,y) satisfies LC for y>3 p(x,3) satisfies LC local holographic transformation interpolate all binary edge coloring k=r hard eigenvalue shifted triple (EST) special binary interpolation binary interpolation eigenvalues planar pairing def chomatic in Tutte obtain =_4 planar Eulerian partition hard (tau_4) p(x,y) satisfies LC for y=>3 Triangle gadget obtain any a+(k-3)b-(k-2)c=0 construct unary 2nd distinct norms 1st distinct norms extra special cases EST distinct norms interpolate all binaries find planar pairing reduction to vertex coloring construct <1> in two cases generalized edge coloring hard <3(k-1),k-3,-3> hard for k>3 <6,0,-3> hard obtain <a',b',b'> assuming a+(k-3)b-(k-2)c!=0 obtain <3(k-1),k-3,-3> generic generalized anti-gadget interpolation 4th special case arity reduction local holographic transformation <(k-1)(k-2),2-k,2> hard ternary construction summary 2nd special case typical case 3rd special case 1st special case 5th special case edge coloring k>r hard a+(k-3)b-(k-2)c=0 dichotomy binary interpolation summary <a,b,c> dichotomy 30 / 41

  41. Interpolating Multivariate Polynomials Let p d ( X ) ∈ Z [ X ] be a polynomial of degree d . Can interpolate p d ( X ) from p d ( x 0 ) , p d ( x 1 ) , . . . , p d ( x d ) � x 0 , x 1 , . . . , x d are distinct 31 / 41

  42. Interpolating Multivariate Polynomials Let p d ( X ) ∈ Z [ X ] be a polynomial of degree d . ∀ d ∈ N , Can interpolate p d ( X ) from p d ( x 0 ) , p d ( x 1 ) , . . . , p d ( x d ) � x 0 , x 1 , . . . are distinct 31 / 41

  43. Interpolating Multivariate Polynomials Let p d ( X ) ∈ Z [ X ] be a polynomial of degree d . ∀ d ∈ N , Can interpolate p d ( X ) from p d ( x 0 ) , p d ( x 1 ) , . . . , p d ( x d ) � x 0 , x 1 , . . . are distinct 31 / 41

  44. Interpolating Multivariate Polynomials Let p d ( X ) ∈ Z [ X ] be a polynomial of degree d . ∀ d ∈ N , Can interpolate p d ( X ) from p d ( x 0 ) , p d ( x 1 ) , . . . , p d ( x d ) � x 0 , x 1 , . . . are distinct � x is not a root of unity 31 / 41

  45. Interpolating Multivariate Polynomials Let p d ( X ) ∈ Z [ X ] be a polynomial of degree d . ∀ d ∈ N , Can interpolate p d ( X ) from p d ( x 0 ) , p d ( x 1 ) , . . . , p d ( x d ) � x 0 , x 1 , . . . are distinct � x is not a root of unity Let q d ( X , Y ) ∈ Z [ X , Y ] be a homogeneous polynomial of degree d . ∀ d ∈ N , Can interpolate q d ( X , Y ) from q d ( x 0 , y 0 ) , q d ( x 1 , y 1 ) , . . . , q d ( x d , y d ) � ? 31 / 41

  46. Interpolating Multivariate Polynomials Let p d ( X ) ∈ Z [ X ] be a polynomial of degree d . ∀ d ∈ N , Can interpolate p d ( X ) from p d ( x 0 ) , p d ( x 1 ) , . . . , p d ( x d ) � x 0 , x 1 , . . . are distinct � x is not a root of unity Let q d ( X , Y ) ∈ Z [ X , Y ] be a homogeneous polynomial of degree d . ∀ d ∈ N , Can interpolate q d ( X , Y ) from q d ( x 0 , y 0 ) , q d ( x 1 , y 1 ) , . . . , q d ( x d , y d ) � 31 / 41

  47. Interpolating Multivariate Polynomials Let p d ( X ) ∈ Z [ X ] be a polynomial of degree d . ∀ d ∈ N , Can interpolate p d ( X ) from p d ( x 0 ) , p d ( x 1 ) , . . . , p d ( x d ) � x 0 , x 1 , . . . are distinct � x is not a root of unity Let q d ( X , Y ) ∈ Z [ X , Y ] be a homogeneous polynomial of degree d . ∀ d ∈ N , Can interpolate q d ( X , Y ) from q d ( x 0 , y 0 ) , q d ( x 1 , y 1 ) , . . . , q d ( x d , y d ) � lattice condition 31 / 41

  48. Lattice Condition Definition We say that λ 1 , λ 2 , . . . , λ ℓ ∈ C − { 0 } satisfy the lattice condition if ℓ ∀ x ∈ Z ℓ − { 0 } � with x i = 0 , i =1 we have ℓ � λ x i i � = 1 . i =1 32 / 41

  49. Lattice Condition Definition We say that λ 1 , λ 2 , . . . , λ ℓ ∈ C − { 0 } satisfy the lattice condition if ℓ ∀ x ∈ Z ℓ − { 0 } � with x i = 0 , i =1 we have ℓ � λ x i i � = 1 . i =1 Lemma Let p ( x ) ∈ Q [ x ] be a polynomial of degree n ≥ 2 . If the Galois group of p over Q is S n or A n and 1 the roots of p do not all have the same complex norm, 2 then the roots of p satisfy the lattice condition. 32 / 41

  50. Interpolation Lemma Lemma If there exists an infinite sequence of F -gates defined by an initial signature s ∈ C n × 1 and a recurrence matrix M ∈ C n × n satisfying the following conditions, M is diagonalizable with n linearly independent eigenvectors; 1 s is not orthogonal to exactly ℓ of these linearly independent row 2 eigenvectors of M with eigenvalues λ 1 , . . . , λ ℓ ; λ 1 , . . . , λ ℓ satisfy the lattice condition; 3 then Holant( · ; F ∪ { f } ) ≤ T Holant( · ; F ) for any signature f that is orthogonal to the n − ℓ of these linearly independent eigenvectors of M to which s is also orthogonal. 33 / 41

  51. Interpolation Lemma Lemma If there exists an infinite sequence of F -gates defined by an initial signature s ∈ C n × 1 and a recurrence matrix M ∈ C n × n satisfying the following conditions, M is diagonalizable with n linearly independent eigenvectors; 1 s is not orthogonal to exactly ℓ of these linearly independent row 2 eigenvectors of M with eigenvalues λ 1 , . . . , λ ℓ ; λ 1 , . . . , λ ℓ satisfy the lattice condition; 3 then Holant( · ; F ∪ { f } ) ≤ T Holant( · ; F ) for any signature f that is orthogonal to the n − ℓ of these linearly independent eigenvectors of M to which s is also orthogonal. Our proof applies this with n = 9 and ℓ = 5. 33 / 41

  52. The Recurrence Matrix ( κ − 1) ( κ 2 +9 κ − 9 )  12( κ − 3)( κ − 1) 2 ( κ − 3) 2 ( κ − 1) 2( κ − 3) 2 ( κ − 2)( κ − 1) ( κ − 3) 2 ( κ − 1) 2( κ − 3) 2 ( κ − 2)( κ − 1) ( κ − 1)(2 κ − 3)(4 κ − 3) 6( κ − 3)( κ − 2)( κ − 1) 2 ( κ − 3) 3 ( κ − 2)( κ − 1)  3( κ − 3)( κ − 1) 3 κ 3 − 28 κ 2 +60 κ − 36 − ( κ − 3)(2 κ − 3) − 2( κ − 3)( κ − 2)(2 κ − 3) − ( κ − 3)(2 κ − 3) − 2( κ − 3)( κ − 2)(2 κ − 3) 3( κ − 3)( κ − 1) 2 ( κ − 2) ( κ 3 − 14 κ 2 +30 κ − 18 ) − ( κ − 3) 2 ( κ − 2)(2 κ − 3)   (2 κ − 3)(4 κ − 3) 12( κ − 3)( κ − 1) 2 ( κ − 3) 2 ( κ − 1) 2( κ − 3) 2 ( κ − 2)( κ − 1) ( κ − 3) 2 ( κ − 1) 2( κ − 3) 2 ( κ − 2)( κ − 1) 9 κ 3 − 26 κ 2 +27 κ − 9 6( κ − 3)( κ − 2)( κ − 1) 2 ( κ − 3) 3 ( κ − 2)( κ − 1)     2 ( κ 3 − 14 κ 2 +30 κ − 18 ) − ( κ − 3)(2 κ − 3) − 2( κ − 3)( κ − 2)(2 κ − 3) − ( κ − 3)(2 κ − 3) − 2( κ − 3)( κ − 2)(2 κ − 3) 3( κ − 3)( κ − 1) 2 ( κ − 3) ( κ 3 − 12 κ 2 +22 κ − 12 ) − ( κ − 3) 2 ( κ − 2)(2 κ − 3) 3( κ − 3)( κ − 1)    ( κ − 3) 2 κ 3 +3 κ − 9 ( κ − 3) 2 ( κ − 1) 3( κ − 3) 2 ( κ − 2)  − 4( κ − 3)(2 κ − 3) 3( κ − 3) 6( κ − 3)( κ − 2) 6( κ − 3)( κ − 2) − 2( κ − 3)( κ − 2)(2 κ − 3)   ( κ − 3) 2 κ 3 +6 κ 2 − 30 κ +36 ( κ − 3) 2 ( κ − 1) 3( κ − 3) 2 ( κ − 2)  − 4( κ − 3)(2 κ − 3) 3( κ − 3) 6( κ − 3)( κ − 2) 3( κ − 3) − 2( κ − 3)( κ − 2)(2 κ − 3)    ( κ − 3) 2 κ 3 +3 κ − 9 ( κ − 3) 2 ( κ − 1) 3( κ − 3) 2 ( κ − 2) − 4( κ − 3)(2 κ − 3) 6( κ − 3)( κ − 2) 3( κ − 3) 6( κ − 3)( κ − 2) − 2( κ − 3)( κ − 2)(2 κ − 3)    ( κ − 3) 2 − 4( κ − 3)(2 κ − 3) 3( κ − 3) κ 3 +6 κ 2 − 30 κ +36 3( κ − 3) 6( κ − 3)( κ − 2) ( κ − 3) 2 ( κ − 1) − 2( κ − 3)( κ − 2)(2 κ − 3) 3( κ − 3) 2 ( κ − 2)  ( κ − 3) 2 ( κ − 3) 2 ( κ − 1) (2 κ − 3) ( 2 κ 2 − 9 κ +18 ) − 4( κ − 3)(2 κ − 3) 3( κ − 3) 6( κ − 3)( κ − 2) 3( κ − 3) 6( κ − 3)( κ − 2) − 2( κ − 3)( κ − 2)(2 κ − 3) 34 / 41

  53. The Recurrence Matrix ( κ − 1) ( κ 2 +9 κ − 9 )  12( κ − 3)( κ − 1) 2 ( κ − 3) 2 ( κ − 1) 2( κ − 3) 2 ( κ − 2)( κ − 1) ( κ − 3) 2 ( κ − 1) 2( κ − 3) 2 ( κ − 2)( κ − 1) ( κ − 1)(2 κ − 3)(4 κ − 3) 6( κ − 3)( κ − 2)( κ − 1) 2 ( κ − 3) 3 ( κ − 2)( κ − 1)  3( κ − 3)( κ − 1) 3 κ 3 − 28 κ 2 +60 κ − 36 − ( κ − 3)(2 κ − 3) − 2( κ − 3)( κ − 2)(2 κ − 3) − ( κ − 3)(2 κ − 3) − 2( κ − 3)( κ − 2)(2 κ − 3) 3( κ − 3)( κ − 1) 2 ( κ − 2) ( κ 3 − 14 κ 2 +30 κ − 18 ) − ( κ − 3) 2 ( κ − 2)(2 κ − 3)   (2 κ − 3)(4 κ − 3) 12( κ − 3)( κ − 1) 2 ( κ − 3) 2 ( κ − 1) 2( κ − 3) 2 ( κ − 2)( κ − 1) ( κ − 3) 2 ( κ − 1) 2( κ − 3) 2 ( κ − 2)( κ − 1) 9 κ 3 − 26 κ 2 +27 κ − 9 6( κ − 3)( κ − 2)( κ − 1) 2 ( κ − 3) 3 ( κ − 2)( κ − 1)     2 ( κ 3 − 14 κ 2 +30 κ − 18 ) − ( κ − 3)(2 κ − 3) − 2( κ − 3)( κ − 2)(2 κ − 3) − ( κ − 3)(2 κ − 3) − 2( κ − 3)( κ − 2)(2 κ − 3) 3( κ − 3)( κ − 1) 2 ( κ − 3) ( κ 3 − 12 κ 2 +22 κ − 12 ) − ( κ − 3) 2 ( κ − 2)(2 κ − 3) 3( κ − 3)( κ − 1)    ( κ − 3) 2 κ 3 +3 κ − 9 ( κ − 3) 2 ( κ − 1) 3( κ − 3) 2 ( κ − 2)  − 4( κ − 3)(2 κ − 3) 3( κ − 3) 6( κ − 3)( κ − 2) 6( κ − 3)( κ − 2) − 2( κ − 3)( κ − 2)(2 κ − 3)   ( κ − 3) 2 κ 3 +6 κ 2 − 30 κ +36 ( κ − 3) 2 ( κ − 1) 3( κ − 3) 2 ( κ − 2)  − 4( κ − 3)(2 κ − 3) 3( κ − 3) 6( κ − 3)( κ − 2) 3( κ − 3) − 2( κ − 3)( κ − 2)(2 κ − 3)    ( κ − 3) 2 κ 3 +3 κ − 9 ( κ − 3) 2 ( κ − 1) 3( κ − 3) 2 ( κ − 2) − 4( κ − 3)(2 κ − 3) 6( κ − 3)( κ − 2) 3( κ − 3) 6( κ − 3)( κ − 2) − 2( κ − 3)( κ − 2)(2 κ − 3)    ( κ − 3) 2 − 4( κ − 3)(2 κ − 3) 3( κ − 3) κ 3 +6 κ 2 − 30 κ +36 3( κ − 3) 6( κ − 3)( κ − 2) ( κ − 3) 2 ( κ − 1) − 2( κ − 3)( κ − 2)(2 κ − 3) 3( κ − 3) 2 ( κ − 2)  ( κ − 3) 2 ( κ − 3) 2 ( κ − 1) (2 κ − 3) ( 2 κ 2 − 9 κ +18 ) − 4( κ − 3)(2 κ − 3) 3( κ − 3) 6( κ − 3)( κ − 2) 3( κ − 3) 6( κ − 3)( κ − 2) − 2( κ − 3)( κ − 2)(2 κ − 3) Characteristic polynomial is ( x − κ 3 ) 4 f ( x , κ ), where f ( x , κ ) = x 5 − κ 6 (2 κ − 1) x 3 − κ 9 ( κ 2 − 2 κ + 3) x 2 + ( κ − 2)( κ − 1) κ 12 x + ( κ − 1) 3 κ 15 . 34 / 41

  54. The Recurrence Matrix ( κ − 1) ( κ 2 +9 κ − 9 )  12( κ − 3)( κ − 1) 2 ( κ − 3) 2 ( κ − 1) 2( κ − 3) 2 ( κ − 2)( κ − 1) ( κ − 3) 2 ( κ − 1) 2( κ − 3) 2 ( κ − 2)( κ − 1) ( κ − 1)(2 κ − 3)(4 κ − 3) 6( κ − 3)( κ − 2)( κ − 1) 2 ( κ − 3) 3 ( κ − 2)( κ − 1)  3( κ − 3)( κ − 1) 3 κ 3 − 28 κ 2 +60 κ − 36 − ( κ − 3)(2 κ − 3) − 2( κ − 3)( κ − 2)(2 κ − 3) − ( κ − 3)(2 κ − 3) − 2( κ − 3)( κ − 2)(2 κ − 3) 3( κ − 3)( κ − 1) 2 ( κ − 2) ( κ 3 − 14 κ 2 +30 κ − 18 ) − ( κ − 3) 2 ( κ − 2)(2 κ − 3)   (2 κ − 3)(4 κ − 3) 12( κ − 3)( κ − 1) 2 ( κ − 3) 2 ( κ − 1) 2( κ − 3) 2 ( κ − 2)( κ − 1) ( κ − 3) 2 ( κ − 1) 2( κ − 3) 2 ( κ − 2)( κ − 1) 9 κ 3 − 26 κ 2 +27 κ − 9 6( κ − 3)( κ − 2)( κ − 1) 2 ( κ − 3) 3 ( κ − 2)( κ − 1)     2 ( κ 3 − 14 κ 2 +30 κ − 18 ) − ( κ − 3)(2 κ − 3) − 2( κ − 3)( κ − 2)(2 κ − 3) − ( κ − 3)(2 κ − 3) − 2( κ − 3)( κ − 2)(2 κ − 3) 3( κ − 3)( κ − 1) 2 ( κ − 3) ( κ 3 − 12 κ 2 +22 κ − 12 ) − ( κ − 3) 2 ( κ − 2)(2 κ − 3) 3( κ − 3)( κ − 1)    ( κ − 3) 2 κ 3 +3 κ − 9 ( κ − 3) 2 ( κ − 1) 3( κ − 3) 2 ( κ − 2)  − 4( κ − 3)(2 κ − 3) 3( κ − 3) 6( κ − 3)( κ − 2) 6( κ − 3)( κ − 2) − 2( κ − 3)( κ − 2)(2 κ − 3)   ( κ − 3) 2 κ 3 +6 κ 2 − 30 κ +36 ( κ − 3) 2 ( κ − 1) 3( κ − 3) 2 ( κ − 2)  − 4( κ − 3)(2 κ − 3) 3( κ − 3) 6( κ − 3)( κ − 2) 3( κ − 3) − 2( κ − 3)( κ − 2)(2 κ − 3)    ( κ − 3) 2 κ 3 +3 κ − 9 ( κ − 3) 2 ( κ − 1) 3( κ − 3) 2 ( κ − 2) − 4( κ − 3)(2 κ − 3) 6( κ − 3)( κ − 2) 3( κ − 3) 6( κ − 3)( κ − 2) − 2( κ − 3)( κ − 2)(2 κ − 3)    ( κ − 3) 2 − 4( κ − 3)(2 κ − 3) 3( κ − 3) κ 3 +6 κ 2 − 30 κ +36 3( κ − 3) 6( κ − 3)( κ − 2) ( κ − 3) 2 ( κ − 1) − 2( κ − 3)( κ − 2)(2 κ − 3) 3( κ − 3) 2 ( κ − 2)  ( κ − 3) 2 ( κ − 3) 2 ( κ − 1) (2 κ − 3) ( 2 κ 2 − 9 κ +18 ) − 4( κ − 3)(2 κ − 3) 3( κ − 3) 6( κ − 3)( κ − 2) 3( κ − 3) 6( κ − 3)( κ − 2) − 2( κ − 3)( κ − 2)(2 κ − 3) Characteristic polynomial is ( x − κ 3 ) 4 f ( x , κ ), where f ( x , κ ) = x 5 − κ 6 (2 κ − 1) x 3 − κ 9 ( κ 2 − 2 κ + 3) x 2 + ( κ − 2)( κ − 1) κ 12 x + ( κ − 1) 3 κ 15 . 1 κ 15 f ( κ 3 x , κ ), we get After replacing κ by y + 1 in p ( x , y ) = x 5 − (2 y + 1) x 3 − ( y 2 + 2) x 2 + ( y − 1) yx + y 3 . 34 / 41

  55. The Recurrence Matrix ( κ − 1) ( κ 2 +9 κ − 9 )  12( κ − 3)( κ − 1) 2 ( κ − 3) 2 ( κ − 1) 2( κ − 3) 2 ( κ − 2)( κ − 1) ( κ − 3) 2 ( κ − 1) 2( κ − 3) 2 ( κ − 2)( κ − 1) ( κ − 1)(2 κ − 3)(4 κ − 3) 6( κ − 3)( κ − 2)( κ − 1) 2 ( κ − 3) 3 ( κ − 2)( κ − 1)  3( κ − 3)( κ − 1) 3 κ 3 − 28 κ 2 +60 κ − 36 − ( κ − 3)(2 κ − 3) − 2( κ − 3)( κ − 2)(2 κ − 3) − ( κ − 3)(2 κ − 3) − 2( κ − 3)( κ − 2)(2 κ − 3) 3( κ − 3)( κ − 1) 2 ( κ − 2) ( κ 3 − 14 κ 2 +30 κ − 18 ) − ( κ − 3) 2 ( κ − 2)(2 κ − 3)   (2 κ − 3)(4 κ − 3) 12( κ − 3)( κ − 1) 2 ( κ − 3) 2 ( κ − 1) 2( κ − 3) 2 ( κ − 2)( κ − 1) ( κ − 3) 2 ( κ − 1) 2( κ − 3) 2 ( κ − 2)( κ − 1) 9 κ 3 − 26 κ 2 +27 κ − 9 6( κ − 3)( κ − 2)( κ − 1) 2 ( κ − 3) 3 ( κ − 2)( κ − 1)     2 ( κ 3 − 14 κ 2 +30 κ − 18 ) − ( κ − 3)(2 κ − 3) − 2( κ − 3)( κ − 2)(2 κ − 3) − ( κ − 3)(2 κ − 3) − 2( κ − 3)( κ − 2)(2 κ − 3) 3( κ − 3)( κ − 1) 2 ( κ − 3) ( κ 3 − 12 κ 2 +22 κ − 12 ) − ( κ − 3) 2 ( κ − 2)(2 κ − 3) 3( κ − 3)( κ − 1)    ( κ − 3) 2 κ 3 +3 κ − 9 ( κ − 3) 2 ( κ − 1) 3( κ − 3) 2 ( κ − 2)  − 4( κ − 3)(2 κ − 3) 3( κ − 3) 6( κ − 3)( κ − 2) 6( κ − 3)( κ − 2) − 2( κ − 3)( κ − 2)(2 κ − 3)   ( κ − 3) 2 κ 3 +6 κ 2 − 30 κ +36 ( κ − 3) 2 ( κ − 1) 3( κ − 3) 2 ( κ − 2)  − 4( κ − 3)(2 κ − 3) 3( κ − 3) 6( κ − 3)( κ − 2) 3( κ − 3) − 2( κ − 3)( κ − 2)(2 κ − 3)    ( κ − 3) 2 κ 3 +3 κ − 9 ( κ − 3) 2 ( κ − 1) 3( κ − 3) 2 ( κ − 2) − 4( κ − 3)(2 κ − 3) 6( κ − 3)( κ − 2) 3( κ − 3) 6( κ − 3)( κ − 2) − 2( κ − 3)( κ − 2)(2 κ − 3)    ( κ − 3) 2 − 4( κ − 3)(2 κ − 3) 3( κ − 3) κ 3 +6 κ 2 − 30 κ +36 3( κ − 3) 6( κ − 3)( κ − 2) ( κ − 3) 2 ( κ − 1) − 2( κ − 3)( κ − 2)(2 κ − 3) 3( κ − 3) 2 ( κ − 2)  ( κ − 3) 2 ( κ − 3) 2 ( κ − 1) (2 κ − 3) ( 2 κ 2 − 9 κ +18 ) − 4( κ − 3)(2 κ − 3) 3( κ − 3) 6( κ − 3)( κ − 2) 3( κ − 3) 6( κ − 3)( κ − 2) − 2( κ − 3)( κ − 2)(2 κ − 3) Characteristic polynomial is ( x − κ 3 ) 4 f ( x , κ ), where f ( x , κ ) = x 5 − κ 6 (2 κ − 1) x 3 − κ 9 ( κ 2 − 2 κ + 3) x 2 + ( κ − 2)( κ − 1) κ 12 x + ( κ − 1) 3 κ 15 . 1 κ 15 f ( κ 3 x , κ ), we get After replacing κ by y + 1 in p ( x , y ) = x 5 − (2 y + 1) x 3 − ( y 2 + 2) x 2 + ( y − 1) yx + y 3 . Want to prove: for all integers y ≥ 4, the roots of p ( x , y ) satisfy the lattice condition. 34 / 41

  56. Irreducible over Q ? We suspect that for any integer y ≥ 4, p ( x , y ) is irreducible in Q [ x ]. 35 / 41

  57. Irreducible over Q ? We suspect that for any integer y ≥ 4, p ( x , y ) is irreducible in Q [ x ]. Don’t know how to prove this. 35 / 41

  58. Irreducible Quintic Lemma For any integer y ≥ 1 , the polynomial p ( x , y ) in x has three distinct real roots and two nonreal complex conjugate roots. Proof. Discriminant. 36 / 41

  59. Irreducible Quintic Lemma For any integer y ≥ 1 , the polynomial p ( x , y ) in x has three distinct real roots and two nonreal complex conjugate roots. Proof. Discriminant. Lemma For any integer y ≥ 4 , if p ( x , y ) is irreducible in Q [ x ] , then the roots of p ( x , y ) satisfy the lattice condition. Proof. Three distinct real roots do not have the same norm. An irreducible polynomial of prime degree n with exactly two nonreal roots has S n as its Galois group over Q . Hence the roots satisfy the lattice condition. 36 / 41

  60. What if Reducible? 37 / 41

  61. What if Reducible? We know five integer solutions to p ( x , y ) = 0. For these solutions, p ( x , y ) is reducible: ( x − 1)( x 4 + x 3 + 2 x 2 − x + 1)  y = − 1   x 2 ( x 3 − x − 2)  y = 0     ( x + 1)( x 4 − x 3 − 2 x 2 − x + 1) p ( x , y ) = y = 1 ( x − 1)( x 2 − x − 4)( x 2 + 2 x + 2)  y = 2     ( x − 3)( x 4 + 3 x 3 + 2 x 2 − 5 x − 9)  y = 3 .  37 / 41

  62. What if Reducible? We know five integer solutions to p ( x , y ) = 0. For these solutions, p ( x , y ) is reducible: ( x − 1)( x 4 + x 3 + 2 x 2 − x + 1)  y = − 1   x 2 ( x 3 − x − 2)  y = 0     ( x + 1)( x 4 − x 3 − 2 x 2 − x + 1) p ( x , y ) = y = 1 ( x − 1)( x 2 − x − 4)( x 2 + 2 x + 2)  y = 2     ( x − 3)( x 4 + 3 x 3 + 2 x 2 − 5 x − 9)  y = 3 .  Lemma Only integer solutions to p ( x , y ) = 0 are (1 , − 1) , (0 , 0) , ( − 1 , 1) , (1 , 2) , (3 , 3) . 37 / 41

  63. If Reducible Lemma For any integer y ≥ 4 , if p ( x , y ) is reducible in Q [ x ] , then the roots of p ( x , y ) satisfy the lattice condition. Proof. By previous lemma, no linear factor over Z . By Gauss’ Lemma, no linear factor over Q . Then more Galois theory if p ( x , y ) factors as a product of two irreducible polynomials of degrees 2 and 3. 38 / 41

  64. Effective Siegel’s Theorem p ( x , y ) = x 5 − (2 y + 1) x 3 − ( y 2 + 2) x 2 + ( y − 1) yx + y 3 . 39 / 41

  65. Effective Siegel’s Theorem p ( x , y ) = x 5 − (2 y + 1) x 3 − ( y 2 + 2) x 2 + ( y − 1) yx + y 3 . Let ( a , b ) be an integer solution to p ( x , y ) = 0 with a � = 0. 39 / 41

  66. Effective Siegel’s Theorem p ( x , y ) = x 5 − (2 y + 1) x 3 − ( y 2 + 2) x 2 + ( y − 1) yx + y 3 . Let ( a , b ) be an integer solution to p ( x , y ) = 0 with a � = 0. One can show that a | b 2 . 39 / 41

  67. Effective Siegel’s Theorem p ( x , y ) = x 5 − (2 y + 1) x 3 − ( y 2 + 2) x 2 + ( y − 1) yx + y 3 . Let ( a , b ) be an integer solution to p ( x , y ) = 0 with a � = 0. One can show that a | b 2 . Consider g 2 ( x , y ) = y 2 x + y − x 2 + 1 . g 1 ( x , y ) = y − x 2 and (This particular choice is due to Aaron Levin.) Then g 1 ( a , b ) and g 2 ( a , b ) are integers. 39 / 41

  68. Effective Siegel’s Theorem p ( x , y ) = x 5 − (2 y + 1) x 3 − ( y 2 + 2) x 2 + ( y − 1) yx + y 3 . Let ( a , b ) be an integer solution to p ( x , y ) = 0 with a � = 0. One can show that a | b 2 . Consider g 2 ( x , y ) = y 2 x + y − x 2 + 1 . g 1 ( x , y ) = y − x 2 and (This particular choice is due to Aaron Levin.) Then g 1 ( a , b ) and g 2 ( a , b ) are integers. However, if | a | > 16, then either g 1 ( a , b ) or g 2 ( a , b ) is not an integer. 39 / 41

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend