siegel s theorem edge coloring and a holant dichotomy
play

Siegels theorem, edge coloring, and a holant dichotomy Tyson - PowerPoint PPT Presentation

Siegels theorem, edge coloring, and a holant dichotomy Tyson Williams (University of Wisconsin-Madison) Joint with: Jin-Yi Cai and Heng Guo (University of Wisconsin-Madison) Appeared at FOCS 2014 1 / 43 Edge Coloring Definition 2 / 43


  1. Hardness of Holant 3 ( − ; AD 3 ) Hardness of Holant 3 ( − ; AD 3 ) proved by the following reduction chain: #P ≤ T Holant 3 ( − ; � 2 , 1 , 0 , 1 , 0 � ) ≤ T Holant 3 ( − ; � 0 , 1 , 1 , 0 , 0 � ) ≤ T Holant 3 ( − ; AD 3 )  w z a if w = x = y = z    b if w = x � = y = z     f f ( w z x y ) = � a , b , c , d , e � = c if w = y � = x = z  d if w = z � = x = y  y  x    e otherwise.  15 / 43

  2. Hardness of Holant 3 ( − ; AD 3 ) Hardness of Holant 3 ( − ; AD 3 ) proved by the following reduction chain: #P ≤ T Holant 3 ( − ; � 2 , 1 , 0 , 1 , 0 � ) ≤ T Holant 3 ( − ; � 0 , 1 , 1 , 0 , 0 � ) ≤ T Holant 3 ( − ; AD 3 )  w z a if w = x = y = z    b if w = x � = y = z     f f ( w z x y ) = � a , b , c , d , e � = c if w = y � = x = z  d if w = z � = x = y  y  x    e otherwise.  15 / 43

  3. Hardness of Holant 3 ( − ; AD 3 ) Hardness of Holant 3 ( − ; AD 3 ) proved by the following reduction chain: #P ≤ T Holant 3 ( − ; � 2 , 1 , 0 , 1 , 0 � ) ≤ T Holant 3 ( − ; � 0 , 1 , 1 , 0 , 0 � ) ≤ T Holant 3 ( − ; AD 3 ) First reduction: From a #P-hard point on the Tutte polynomial. 15 / 43

  4. Hardness of Holant 3 ( − ; AD 3 ) Hardness of Holant 3 ( − ; AD 3 ) proved by the following reduction chain: #P ≤ T Holant 3 ( − ; � 2 , 1 , 0 , 1 , 0 � ) ≤ T Holant 3 ( − ; � 0 , 1 , 1 , 0 , 0 � ) ≤ T Holant 3 ( − ; AD 3 ) First reduction: From a #P-hard point on the Tutte polynomial. Second reduction: Via polynomial interpolation. 15 / 43

  5. Hardness of Holant 3 ( − ; AD 3 ) Hardness of Holant 3 ( − ; AD 3 ) proved by the following reduction chain: #P ≤ T Holant 3 ( − ; � 2 , 1 , 0 , 1 , 0 � ) ≤ T Holant 3 ( − ; � 0 , 1 , 1 , 0 , 0 � ) ≤ T Holant 3 ( − ; AD 3 ) First reduction: From a #P-hard point on the Tutte polynomial. Second reduction: Via polynomial interpolation. Third reduction: Via a gadget construction. 15 / 43

  6. Hardness of Holant 3 ( − ; AD 3 ) Hardness of Holant 3 ( − ; AD 3 ) proved by the following reduction chain: #P ≤ T Holant 3 ( − ; � 2 , 1 , 0 , 1 , 0 � ) ≤ T Holant 3 ( − ; � 0 , 1 , 1 , 0 , 0 � ) ≤ T Holant 3 ( − ; AD 3 ) First reduction: From a #P-hard point on the Tutte polynomial. Second reduction: Via polynomial interpolation. Third reduction: Via a gadget construction. 15 / 43

  7. Reduce From Tutte Polynomial Definition The Tutte polynomial of an undirected graph G is E ( G ) = ∅ ,  1    xT ( G \ e ; x , y ) e ∈ E ( G ) is a bridge,  T ( G ; x , y ) = yT ( G \ e ; x , y ) e ∈ E ( G ) is a loop,     T ( G \ e ; x , y ) + T ( G / e ; x , y ) otherwise, where G \ e is the graph obtained by deleting e and G / e is the graph obtained by contracting e . 16 / 43

  8. Reduce From Tutte Polynomial Definition The Tutte polynomial of an undirected graph G is E ( G ) = ∅ ,  1    xT ( G \ e ; x , y ) e ∈ E ( G ) is a bridge,  T ( G ; x , y ) = yT ( G \ e ; x , y ) e ∈ E ( G ) is a loop,     T ( G \ e ; x , y ) + T ( G / e ; x , y ) otherwise, where G \ e is the graph obtained by deleting e and G / e is the graph obtained by contracting e . The chromatic polynomial is χ ( G ; λ ) = ( − 1) | V |− 1 λ T( G ; 1 − λ, 0) . 16 / 43

  9. Reduction From Tutte Polynomial: Medial Graph Definition (a) (b) (c) A plane graph (a), its medial graph (c), and the two graphs superimposed (b). 17 / 43

  10. Reduction From Tutte Polynomial: Directed Medial Graph Definition (a) (b) (c) A plane graph (a), its directed medial graph (c), and the two graphs superimposed (b). 18 / 43

  11. Reduction From Tutte Polynomial: Eulerian Graphs and Eulerian Partitions Definition Digraph is Eulerian if “in degree” = “out degree”. 1 19 / 43

  12. Reduction From Tutte Polynomial: Eulerian Graphs and Eulerian Partitions Definition Digraph is Eulerian if “in degree” = “out degree”. 1 Eulerian partition of an Eulerian digraph � G is a partition of the edges 2 of � G such that each part induces an Eulerian digraph. 19 / 43

  13. Reduction From Tutte Polynomial: Eulerian Graphs and Eulerian Partitions Definition Digraph is Eulerian if “in degree” = “out degree”. 1 Eulerian partition of an Eulerian digraph � G is a partition of the edges 2 of � G such that each part induces an Eulerian digraph. Let π κ ( � G ) be the set of Eulerian partitions of � G into at most κ parts. 3 κ ≥ 2 19 / 43

  14. Reduction From Tutte Polynomial: Eulerian Graphs and Eulerian Partitions Definition Digraph is Eulerian if “in degree” = “out degree”. 1 Eulerian partition of an Eulerian digraph � G is a partition of the edges 2 of � G such that each part induces an Eulerian digraph. Let π κ ( � G ) be the set of Eulerian partitions of � G into at most κ parts. 3 Let µ ( c ) be the number of monochromatic vertices in c . 4 κ ≥ 2 µ ( c ) = 1 19 / 43

  15. Reduction From Tutte Polynomial: Crucial Identity Theorem (Ellis-Monaghan) For a plane graph G, � 2 µ ( c ) . κ T( G ; κ + 1 , κ + 1) = c ∈ π κ ( � G m ) 20 / 43

  16. Reduction From Tutte Polynomial: Connection to Holant Then 2 µ ( c ) = Holant κ ( G m ; � 2 , 1 , 0 , 1 , 0 � ) , � c ∈ π κ ( � G m ) where  2 if w = x = y = z E    1 if w = x � = y = z     E ( w z if w = y � = x = z x y ) = 0  1 if w = z � = x = y      0 otherwise,  where E = � 2 , 1 , 0 , 1 , 0 � . 21 / 43

  17. Reduction From Tutte Polynomial: Connection to Holant Then 2 µ ( c ) = Holant κ ( G m ; � 2 , 1 , 0 , 1 , 0 � ) , � c ∈ π κ ( � G m ) where  2 if w = x = y = z E    1 if w = x � = y = z     E ( w z if w = y � = x = z x y ) = 0  1 if w = z � = x = y      0 otherwise,  where E = � 2 , 1 , 0 , 1 , 0 � . 21 / 43

  18. Reduction From Tutte Polynomial: Connection to Holant Then 2 µ ( c ) = Holant κ ( G m ; � 2 , 1 , 0 , 1 , 0 � ) , � c ∈ π κ ( � G m ) where  2 if w = x = y = z E    1 if w = x � = y = z     E ( w z if w = y � = x = z x y ) = 0  1 if w = z � = x = y      0 otherwise,  where E = � 2 , 1 , 0 , 1 , 0 � . 21 / 43

  19. Reduction From Tutte Polynomial: Connection to Holant Then 2 µ ( c ) = Holant κ ( G m ; � 2 , 1 , 0 , 1 , 0 � ) , � c ∈ π κ ( � G m ) where  2 if w = x = y = z E    1 if w = x � = y = z     E ( w z if w = y � = x = z x y ) = 0  1 if w = z � = x = y      0 otherwise,  where E = � 2 , 1 , 0 , 1 , 0 � . 21 / 43

  20. Reduction From Tutte Polynomial: Connection to Holant Then 2 µ ( c ) = Holant κ ( G m ; � 2 , 1 , 0 , 1 , 0 � ) , � c ∈ π κ ( � G m ) where  2 if w = x = y = z E    1 if w = x � = y = z     E ( w z if w = y � = x = z x y ) = 0  1 if w = z � = x = y      0 otherwise,  where E = � 2 , 1 , 0 , 1 , 0 � . 21 / 43

  21. Reduction From Tutte Polynomial: Upshot Corollary For a plane graph G, κ T ( G ; κ + 1 , κ + 1) = Holant κ ( G m ; � 2 , 1 , 0 , 1 , 0 � ) 22 / 43

  22. Reduction From Tutte Polynomial: Upshot Corollary For a plane graph G, κ T ( G ; κ + 1 , κ + 1) = Holant κ ( G m ; � 2 , 1 , 0 , 1 , 0 � ) y Theorem (Vertigan) 4 For any x , y ∈ C , the problem of 3 evaluating the Tutte polynomial at ( x , y ) over planar graphs is #P-hard 2 unless ( x − 1)( y − 1) ∈ { 1 , 2 } or 1 ( x , y ) ∈ { ( ± 1 , ± 1) , ( ω, ω 2 ) , ( ω 2 , ω ) } , where ω = e 2 π i / 3 . In each of these x � 2 � 1 1 2 3 4 exceptional cases, the computation � 1 can be done in polynomial time. � 2 22 / 43

  23. Hardness of Holant 3 ( − ; AD 3 ) Hardness of Holant 3 ( − ; AD 3 ) proved by the following reduction chain: #P ≤ T Holant 3 ( − ; � 2 , 1 , 0 , 1 , 0 � ) ≤ T Holant 3 ( − ; � 0 , 1 , 1 , 0 , 0 � ) ≤ T Holant 3 ( − ; AD 3 ) First reduction: From a #P-hard point on the Tutte polynomial. Second reduction: Via polynomial interpolation. Third reduction: Via a gadget construction. 23 / 43

  24. Hardness of Holant 3 ( − ; AD 3 ) Hardness of Holant 3 ( − ; AD 3 ) proved by the following reduction chain: #P ≤ T Holant 3 ( − ; � 2 , 1 , 0 , 1 , 0 � ) ≤ T Holant 3 ( − ; � 0 , 1 , 1 , 0 , 0 � ) ≤ T Holant 3 ( − ; AD 3 ) First reduction: From a #P-hard point on the Tutte polynomial. Second reduction: Via polynomial interpolation. Third reduction: Via a gadget construction. 23 / 43

  25. Gadget Construction Holant( G ; � 0 , 1 , 1 , 0 , 0 � ) ≤ T Holant( G ′ ; AD 3 ) AD 3 w z AD 3 y x  0 if w = x = y = z    1 if w = x � = y = z     f ( w z x y ) = � 0 , 1 , 1 , 0 , 0 � = if w = y � = x = z 1  0 if w = z � = x = y      0 otherwise.  24 / 43

  26. Gadget Construction Holant( G ; � 0 , 1 , 1 , 0 , 0 � ) ≤ T Holant( G ′ ; AD 3 ) AD 3 w z AD 3 y x  0 if w = x = y = z    1 if w = x � = y = z     f ( w z x y ) = � 0 , 1 , 1 , 0 , 0 � = if w = y � = x = z 1  0 if w = z � = x = y      0 otherwise.  24 / 43

  27. Gadget Construction Holant( G ; � 0 , 1 , 1 , 0 , 0 � ) ≤ T Holant( G ′ ; AD 3 ) AD 3 w z AD 3 y x  0 if w = x = y = z    1 if w = x � = y = z     f ( w z x y ) = � 0 , 1 , 1 , 0 , 0 � = if w = y � = x = z 1  0 if w = z � = x = y      0 otherwise.  24 / 43

  28. Gadget Construction Holant( G ; � 0 , 1 , 1 , 0 , 0 � ) ≤ T Holant( G ′ ; AD 3 ) AD 3 w z AD 3 y x  0 if w = x = y = z    1 if w = x � = y = z     f ( w z x y ) = � 0 , 1 , 1 , 0 , 0 � = if w = y � = x = z 1  0 if w = z � = x = y      0 otherwise.  24 / 43

  29. Gadget Construction Holant( G ; � 0 , 1 , 1 , 0 , 0 � ) ≤ T Holant( G ′ ; AD 3 ) AD 3 w z AD 3 y x  0 if w = x = y = z    1 if w = x � = y = z     f ( w z x y ) = � 0 , 1 , 1 , 0 , 0 � = if w = y � = x = z 1  0 if w = z � = x = y      0 otherwise.  24 / 43

  30. Gadget Construction Holant( G ; � 0 , 1 , 1 , 0 , 0 � ) ≤ T Holant( G ′ ; AD 3 ) AD 3 w z AD 3 y x  0 if w = x = y = z    1 if w = x � = y = z     f ( w z x y ) = � 0 , 1 , 1 , 0 , 0 � = if w = y � = x = z 1  0 if w = z � = x = y      0 otherwise.  24 / 43

  31. Gadget Construction Holant( G ; � 0 , 1 , 1 , 0 , 0 � ) ≤ T Holant( G ′ ; AD 3 ) AD 3 w z AD 3 y x  0 if w = x = y = z    1 if w = x � = y = z     f ( w z x y ) = � 0 , 1 , 1 , 0 , 0 � = if w = y � = x = z 1  0 if w = z � = x = y      0 otherwise.  24 / 43

  32. Hardness of Holant 3 ( − ; AD 3 ) Hardness of Holant 3 ( − ; AD 3 ) proved by the following reduction chain: #P ≤ T Holant 3 ( − ; � 2 , 1 , 0 , 1 , 0 � ) ≤ T Holant 3 ( − ; � 0 , 1 , 1 , 0 , 0 � ) ≤ T Holant 3 ( − ; AD 3 ) First reduction: From a #P-hard point on the Tutte polynomial. Second reduction: Via polynomial interpolation. Third reduction: Via a gadget construction. 25 / 43

  33. Hardness of Holant 3 ( − ; AD 3 ) Hardness of Holant 3 ( − ; AD 3 ) proved by the following reduction chain: #P ≤ T Holant 3 ( − ; � 2 , 1 , 0 , 1 , 0 � ) ≤ T Holant 3 ( − ; � 0 , 1 , 1 , 0 , 0 � ) ≤ T Holant 3 ( − ; AD 3 ) First reduction: From a #P-hard point on the Tutte polynomial. Second reduction: Via polynomial interpolation. Third reduction: Via a gadget construction. 25 / 43

  34. Polynomial Interpolation: Recursive Construction Holant 3 ( G ; � 2 , 1 , 0 , 1 , 0 � ) ≤ T Holant 3 ( G s ; � 0 , 1 , 1 , 0 , 0 � ) N s N 1 N 2 N s +1 Vertices are assigned � 0 , 1 , 1 , 0 , 0 � . 26 / 43

  35. Polynomial Interpolation: Recursive Construction Holant 3 ( G ; � 2 , 1 , 0 , 1 , 0 � ) ≤ T Holant 3 ( G s ; � 0 , 1 , 1 , 0 , 0 � ) N s N 1 N 2 N s +1 Vertices are assigned � 0 , 1 , 1 , 0 , 0 � . Let f s be the function corresponding to N s . Then f s = M s f 0 , where  0 2 0 0 0   1  1 1 0 0 0 0         M = 0 0 0 1 0 and f 0 = 0 .         0 0 1 0 0 1     0 0 0 0 1 0 Obviously f 1 = � 0 , 1 , 1 , 0 , 0 � . 26 / 43

  36. Polynomial Interpolation: Eigenvectors and Eigenvalues Spectral decomposition M = P Λ P − 1 , where  1 − 2 0 0 0   2 0 0 0 0  1 1 0 0 0 0 − 1 0 0 0         P = 0 0 1 1 0 and Λ = 0 0 1 0 0 .         0 0 1 − 1 0 0 0 0 − 1 0     0 0 0 0 1 0 0 0 0 1 27 / 43

  37. Polynomial Interpolation: Eigenvectors and Eigenvalues Spectral decomposition M = P Λ P − 1 , where  1 − 2 0 0 0   2 0 0 0 0  1 1 0 0 0 0 − 1 0 0 0         P = 0 0 1 1 0 and Λ = 0 0 1 0 0 .         0 0 1 − 1 0 0 0 0 − 1 0     0 0 0 0 1 0 0 0 0 1 Let x = 2 2 s . Then x − 1  x 0 0 0 0   + 1  3 x − 1 0 1 0 0 0    3  f 2 s = P Λ 2 s P − 1 f 0 = P   P − 1 f 0 =   0 0 1 0 0 0 .         0 0 0 1 0 1     0 0 0 0 1 0 27 / 43

  38. Polynomial Interpolation: Eigenvectors and Eigenvalues Spectral decomposition M = P Λ P − 1 , where  1 − 2 0 0 0   2 0 0 0 0  1 1 0 0 0 0 − 1 0 0 0         P = 0 0 1 1 0 and Λ = 0 0 1 0 0 .         0 0 1 − 1 0 0 0 0 − 1 0     0 0 0 0 1 0 0 0 0 1 Let x = 2 2 s . Then x − 1  x 0 0 0 0   + 1  3 x − 1 0 1 0 0 0    3  f ( x ) = f 2 s = P Λ 2 s P − 1 f 0 = P   P − 1 f 0 =   0 0 1 0 0 0 .         0 0 0 1 0 1     0 0 0 0 1 0 27 / 43

  39. Polynomial Interpolation: Eigenvectors and Eigenvalues Spectral decomposition M = P Λ P − 1 , where  1 − 2 0 0 0   2 0 0 0 0  1 1 0 0 0 0 − 1 0 0 0         P = 0 0 1 1 0 and Λ = 0 0 1 0 0 .         0 0 1 − 1 0 0 0 0 − 1 0     0 0 0 0 1 0 0 0 0 1 Let x = 2 2 s . Then x − 1  x 0 0 0 0   + 1  3 x − 1 0 1 0 0 0    3  f ( x ) = f 2 s = P Λ 2 s P − 1 f 0 = P   P − 1 f 0 =   0 0 1 0 0 0 .         0 0 0 1 0 1     0 0 0 0 1 0 Note f (4) = � 2 , 1 , 0 , 1 , 0 � . 27 / 43

  40. Polynomial Interpolation: Eigenvectors and Eigenvalues Spectral decomposition M = P Λ P − 1 , where  1 − 2 0 0 0   2 0 0 0 0  1 1 0 0 0 0 − 1 0 0 0         P = 0 0 1 1 0 and Λ = 0 0 1 0 0 .         0 0 1 − 1 0 0 0 0 − 1 0     0 0 0 0 1 0 0 0 0 1 Let x = 2 2 s . Then x − 1  x 0 0 0 0   + 1  3 x − 1 0 1 0 0 0    3  f ( x ) = f 2 s = P Λ 2 s P − 1 f 0 = P   P − 1 f 0 =   0 0 1 0 0 0 .         0 0 0 1 0 1     0 0 0 0 1 0 Note f (4) = � 2 , 1 , 0 , 1 , 0 � . (Side note: picking s = 1 so that x = 4 only works when κ = 3.) 27 / 43

  41. Polynomial Interpolation: The Interpolation Holant 3 ( − ; � 2 , 1 , 0 , 1 , 0 � ) ≤ T Holant 3 ( − ; � 0 , 1 , 1 , 0 , 0 � ) 28 / 43

  42. Polynomial Interpolation: The Interpolation Holant 3 ( − ; � 2 , 1 , 0 , 1 , 0 � ) = T Holant 3 ( − ; f (4)) ≤ T Holant 3 ( − ; f ( x )) ≤ T Holant 3 ( − ; � 0 , 1 , 1 , 0 , 0 � ) 28 / 43

  43. Polynomial Interpolation: The Interpolation Holant 3 ( − ; � 2 , 1 , 0 , 1 , 0 � ) = T Holant 3 ( − ; f (4)) ≤ T Holant 3 ( − ; f ( x )) ≤ T Holant 3 ( − ; � 0 , 1 , 1 , 0 , 0 � ) If G has n vertices, then p ( G , x ) = Holant 3 ( G ; f ( x )) ∈ Z [ x ] has degree n . 28 / 43

  44. Polynomial Interpolation: The Interpolation Holant 3 ( − ; � 2 , 1 , 0 , 1 , 0 � ) = T Holant 3 ( − ; f (4)) ≤ T Holant 3 ( − ; f ( x )) ≤ T Holant 3 ( − ; � 0 , 1 , 1 , 0 , 0 � ) If G has n vertices, then p ( G , x ) = Holant 3 ( G ; f ( x )) ∈ Z [ x ] has degree n . Let G 2 s be the graph obtained by replacing every vertex in G with N 2 s . Then Holant 3 ( G 2 s ; � 0 , 1 , 1 , 0 , 0 � ) = p ( G , 2 2 s ). 28 / 43

  45. Polynomial Interpolation: The Interpolation Holant 3 ( − ; � 2 , 1 , 0 , 1 , 0 � ) = T Holant 3 ( − ; f (4)) ≤ T Holant 3 ( − ; f ( x )) ≤ T Holant 3 ( − ; � 0 , 1 , 1 , 0 , 0 � ) If G has n vertices, then p ( G , x ) = Holant 3 ( G ; f ( x )) ∈ Z [ x ] has degree n . Let G 2 s be the graph obtained by replacing every vertex in G with N 2 s . Then Holant 3 ( G 2 s ; � 0 , 1 , 1 , 0 , 0 � ) = p ( G , 2 2 s ). Using oracle for Holant 3 ( − ; � 0 , 1 , 1 , 0 , 0 � ), evaluate p ( G , x ) at n + 1 distinct points x = 2 2 s for 0 ≤ s ≤ n . By polynomial interpolation, efficiently compute the coefficients of p ( G , x ). QED. 28 / 43

  46. Proof Outline for Dichotomy of Holant( − ; � a , b , c � ) For all a , b , c ∈ C , want to show that Holant( − ; � a , b , c � ) is in P or #P-hard . 29 / 43

  47. Proof Outline for Dichotomy of Holant( − ; � a , b , c � ) For all a , b , c ∈ C , want to show that Holant( − ; � a , b , c � ) is in P or #P-hard . Using � a , b , c � : Attempt to construct a special unary constraint. 1 Attempt to interpolate all binary constraints of a special form, 2 assuming we have the special unary constraint. Construct a special ternary constraint that we show is #P-hard , 3 assuming we have the special unary and binary constraints. 29 / 43

  48. Proof Outline for Dichotomy of Holant( − ; � a , b , c � ) For all a , b , c ∈ C , want to show that Holant( − ; � a , b , c � ) is in P or #P-hard . Using � a , b , c � : Attempt to construct a special unary constraint. 1 Attempt to interpolate all binary constraints of a special form, 2 assuming we have the special unary constraint. Construct a special ternary constraint that we show is #P-hard , 3 assuming we have the special unary and binary constraints. For some a , b , c ∈ C , our attempts fail. In those cases, we either show the problem is in P or 1 prove #P-hardness without the help of additional signatures. 2 29 / 43

  49. Holant( � a, b, c � ) Lemma 8.2 Attempts 1 and 2 Construct � 1 � Fail Lemma 8.1 Lemma 8.3 Succeed Attempt 1 Lemma 9.4 Counting Attempt 2 Interpolate Weighted Fail Cases 1, 2, 3, 4, 5 all � x, y � Corollary 8.4 Eulerian Lemmas 9.5, 9.6, 9.7, 9.11, 9.12 B = 0 Corollary 9.13 Partitions Corollary 7.13 Attempts 3 and 4 All Cases Lemma B.1 Succeed Construct Construct � a, b, b � Fail Attempt 1 Lemmas 7.14 � 3( κ − 1) , κ − 3 , − 3 � with a � = b Lemma 7.1 and 7.15 A = 0 Lemma 7.3 Succeed Bobby Fischer Gadget Lemma 4.18 Counting Vertex κ -Colorings Corollary 4.19 30 / 43

  50. Logical Dependencies in Dichotomy of Holant κ ( − ; � a , b , c � ) edge coloring k=r Eulerian partition directed medial graph parity condition major interpolate results ternary and quaternary resutls Tutte diagonal as state sum tau_color: f(P_0) = 0 check orthogonality condition lattice condition (LC) Puiseux series planar T utte dichotomy only 5 solutions in Z for p(x,y) state sum as Holant problem any arity interpolation LC characterization for cubic polys LC satisfied by Sn or An Galois Gps 3R & 2C roots in x for p(x,y) condition for Sn Galois gp Dedkind's Theorem condition from same norm roots edge coloring k>r hard generic binary interpolation Bobby Fischer gadget planar Eulerian partition hard (tau_color) reducible p(x,y) satisfies LC for y>3 irreducible p(x,y) satisfies LC for y>3 p(x,3) satisfies LC local holographic transformation interpolate all binary edge coloring k=r hard eigenvalue shifted triple (EST) special binary interpolation binary interpolation eigenvalues planar pairing def chomatic in Tutte obtain =_4 planar Eulerian partition hard (tau_4) p(x,y) satisfies LC for y=>3 Triangle gadget obtain any a+(k-3)b-(k-2)c=0 construct unary 2nd distinct norms 1st distinct norms extra special cases EST distinct norms interpolate all binaries find planar pairing reduction to vertex coloring construct <1> in two cases generalized edge coloring hard <3(k-1),k-3,-3> hard for k>3 <6,0,-3> hard obtain <a',b',b'> assuming a+(k-3)b-(k-2)c!=0 obtain <3(k-1),k-3,-3> generic generalized anti-gadget interpolation 4th special case arity reduction local holographic transformation <(k-1)(k-2),2-k,2> hard ternary construction summary 2nd special case typical case 3rd special case 1st special case 5th special case edge coloring k>r hard a+(k-3)b-(k-2)c=0 dichotomy binary interpolation summary <a,b,c> dichotomy 31 / 43

  51. Polynomial Interpolation Evaluate x ∈{ 1 , 2 , 3 , 4 } 30 20 p ( x ) = 2 x 3 − 3 x 2 − 17 x + 10 10 � 2 � 1 1 2 3 4 � 10 � 20 Interpolate p (1) = 2 · 1 3 − 3 · 1 2 − 17 · 1 + 10 = − 8 p (2) = 2 · 2 3 − 3 · 2 2 − 17 · 2 + 10 = − 20 p (3) = 2 · 3 3 − 3 · 3 2 − 17 · 3 + 10 = − 14 p (4) = 2 · 4 3 − 3 · 4 2 − 17 · 4 + 10 = 22 32 / 43

  52. Polynomial Interpolation Evaluate x ∈{ 1 , 2 , 3 , 4 } 30 20 p ( x ) = 2 x 3 − 3 x 2 − 17 x + 10 10 � 2 � 1 1 2 3 4 � 10 � 20 Interpolate 1 3 1 2 1 1 1 0       2 − 8 2 3 2 2 2 1 2 0 − 3 − 20        =  3 3 3 2 3 1 3 0      − 17 − 14      4 3 4 2 4 1 4 0 10 22 Vandermonde system 32 / 43

  53. Polynomial Interpolation Evaluate x ∈{ 1 , 2 , 3 , 4 } 30 20 p ( x ) = 2 x 3 − 3 x 2 − 17 x + 10 10 � 2 � 1 1 2 3 4 � 10 � 20 Interpolate 1 3 1 2 1 1 1 0       ? − 8 2 3 2 2 2 1 2 0 ? − 20       =  3 3 3 2 3 1 3 0      ? − 14       4 3 4 2 4 1 4 0 ? 22 Vandermonde system 32 / 43

  54. Polynomial Interpolation Evaluate x ∈{ 1 , 2 , 3 , 4 } 30 20 p ( x ) = 2 x 3 − 3 x 2 − 17 x + 10 10 � 2 � 1 1 2 3 4 � 10 � 20 Interpolate − 1  1 3 1 2 1 1 1 0      ? − 8 2 3 2 2 2 1 2 0 ? − 20        =    3 3 3 2 3 1 3 0    ? − 14      4 3 4 2 4 1 4 0 ? 22 Vandermonde system 32 / 43

  55. Polynomial Interpolation Evaluate x ∈{ 1 , 2 , 3 , 4 } 30 20 p ( x ) = 2 x 3 − 3 x 2 − 17 x + 10 10 � 2 � 1 1 2 3 4 � 10 � 20 Interpolate − 1  1 3 1 2 1 1 1 0      2 − 8 2 3 2 2 2 1 2 0 − 3 − 20        =    3 3 3 2 3 1 3 0    − 17 − 14      4 3 4 2 4 1 4 0 10 22 Vandermonde system 32 / 43

  56. Interpolating Univariate Polynomials Let p d ( X ) = c 0 + c 1 X + · · · + c d X d ∈ Z [ X ]. Can interpolate p d ( X ) from p d ( x 0 ) , p d ( x 1 ) , . . . , p d ( x d ) � x 0 , x 1 , . . . , x d are distinct ( x 0 ) 0 ( x 0 ) 1  ( x 0 ) d      · · · c 0 p d ( x 0 ) ( x 1 ) 0 ( x 1 ) 1 ( x 1 ) d · · · c 1 p d ( x 1 )        =  . . .   .   .  ... . . . . .       . . . . .      ( x d ) 0 ( x d ) 1 ( x d ) d · · · c d p d ( x d ) Vandermonde system 33 / 43

  57. Interpolating Univariate Polynomials Let p d ( X ) = c 0 + c 1 X + · · · + c d X d ∈ Z [ X ]. ∀ d ∈ N , Can interpolate p d ( X ) from p d ( x 0 ) , p d ( x 1 ) , . . . , p d ( x d ) � x 0 , x 1 , . . . are distinct ( x 0 ) 0 ( x 0 ) 1  ( x 0 ) d      · · · c 0 p d ( x 0 ) ( x 1 ) 0 ( x 1 ) 1 ( x 1 ) d · · · c 1 p d ( x 1 )        =  . . .   .   .  ... . . . . .       . . . . .      ( x d ) 0 ( x d ) 1 ( x d ) d · · · c d p d ( x d ) Vandermonde system 33 / 43

  58. Interpolating Univariate Polynomials Let p d ( X ) = c 0 + c 1 X + · · · + c d X d ∈ Z [ X ]. ∀ d ∈ N , Can interpolate p d ( X ) from p d ( x 0 ) , p d ( x 1 ) , . . . , p d ( x d ) � x 0 , x 1 , . . . are distinct ( x 0 ) 0 ( x 0 ) 1 ( x 0 ) d p d ( x 0 )       · · · c 0 ( x 1 ) 0 ( x 1 ) 1 ( x 1 ) d p d ( x 1 ) · · · c 1        =  . . .   .   .  ... . . . . .       . . . . .      ( x d ) 0 ( x d ) 1 ( x d ) d p d ( x d ) · · · c d Vandermonde system 33 / 43

  59. Interpolating Univariate Polynomials Let p d ( X ) = c 0 + c 1 X + · · · + c d X d ∈ Z [ X ]. ∀ d ∈ N , Can interpolate p d ( X ) from p d ( x 0 ) , p d ( x 1 ) , . . . , p d ( x d ) � x 0 , x 1 , . . . are distinct � x is not a root of unity ( x 0 ) 0 ( x 0 ) 1 ( x 0 ) d p d ( x 0 )       · · · c 0 ( x 1 ) 0 ( x 1 ) 1 ( x 1 ) d p d ( x 1 ) · · · c 1        =  . . .   .   .  ... . . . . .       . . . . .      ( x d ) 0 ( x d ) 1 ( x d ) d p d ( x d ) · · · c d Vandermonde system 33 / 43

  60. Interpolating Multivariate Polynomials Let p d ( X , Y , Z ) = c 0 , 0 , d X 0 Y 0 Z d + · · · + c d , 0 , 0 X d Y 0 Z 0 ∈ Z [ X , Y , Z ] be a homogeneous multivariate polynomial of degree d . ∀ d ∈ N , Can interpolate p d ( X , Y , Z ) from p d ( x 0 , y 0 , z 0 ) , p d ( x 1 , y 1 , z 1 ) , . . . � ? ( x 0 ) 0 ( y 0 ) 0 ( z 0 ) d ( x 0 ) d ( y 0 ) 0 ( z 0 ) 0       · · · c 0 , 0 , d p d ( x 0 , y 0 , z 0 ) . ( x 1 ) 0 ( y 1 ) 0 ( z 1 ) d ( x 1 ) d ( y 1 ) 0 ( z 1 ) 0 · · · p d ( x 1 , y 1 , z 1 ) .  =       . . . . .      . . . . . . . c d , 0 , 0 . 34 / 43

  61. Interpolating Multivariate Polynomials Let p d ( X , Y , Z ) = c 0 , 0 , d X 0 Y 0 Z d + · · · + c d , 0 , 0 X d Y 0 Z 0 ∈ Z [ X , Y , Z ] be a homogeneous multivariate polynomial of degree d . ∀ d ∈ N , Can interpolate p d ( X , Y , Z ) from p d ( x 0 , y 0 , z 0 ) , p d ( x 1 , y 1 , z 1 ) , . . . � ( x 0 ) 0 ( y 0 ) 0 ( z 0 ) d ( x 0 ) d ( y 0 ) 0 ( z 0 ) 0 p d ( x 0 , y 0 , z 0 )       · · · c 0 , 0 , d . ( x 1 ) 0 ( y 1 ) 0 ( z 1 ) d ( x 1 ) d ( y 1 ) 0 ( z 1 ) 0 p d ( x 1 , y 1 , z 1 ) · · · .  =       . . . . .      . . . . . . . c d , 0 , 0 . Vandermonde system 34 / 43

  62. Interpolating Multivariate Polynomials Let p d ( X , Y , Z ) = c 0 , 0 , d X 0 Y 0 Z d + · · · + c d , 0 , 0 X d Y 0 Z 0 ∈ Z [ X , Y , Z ] be a homogeneous multivariate polynomial of degree d . ∀ d ∈ N , Can interpolate p d ( X , Y , Z ) from p d ( x 0 , y 0 , z 0 ) , p d ( x 1 , y 1 , z 1 ) , . . . � ( x 0 y 0 z d ) 0 ( x d y 0 z 0 ) 0 p d ( x 0 , y 0 , z 0 )       · · · c 0 , 0 , d . ( x 0 y 0 z d ) 1 ( x d y 0 z 0 ) 1 p d ( x 1 , y 1 , z 1 ) · · · .  =       . . . . .      . . . . . . . c d , 0 , 0 . Vandermonde system 34 / 43

  63. Interpolating Multivariate Polynomials Let p d ( X , Y , Z ) = c 0 , 0 , d X 0 Y 0 Z d + · · · + c d , 0 , 0 X d Y 0 Z 0 ∈ Z [ X , Y , Z ] be a homogeneous multivariate polynomial of degree d . ∀ d ∈ N , Can interpolate p d ( X , Y , Z ) from p d ( x 0 , y 0 , z 0 ) , p d ( x 1 , y 1 , z 1 ) , . . . � lattice condition ( x 0 y 0 z d ) 0 ( x d y 0 z 0 ) 0 p d ( x 0 , y 0 , z 0 )       · · · c 0 , 0 , d . ( x 0 y 0 z d ) 1 ( x d y 0 z 0 ) 1 p d ( x 1 , y 1 , z 1 ) · · · .  =       . . . . .      . . . . . . . c d , 0 , 0 . Vandermonde system 34 / 43

  64. Lattice Condition Definition We say that λ 1 , λ 2 , . . . , λ ℓ ∈ C − { 0 } satisfy the lattice condition if ℓ ∀ x ∈ Z ℓ − { 0 } � with x i = 0 , i =1 ℓ we have � λ x i i � = 1 . i =1 35 / 43

  65. Lattice Condition Definition We say that λ 1 , λ 2 , . . . , λ ℓ ∈ C − { 0 } satisfy the lattice condition if ℓ ∀ x ∈ Z ℓ − { 0 } � with x i = 0 , i =1 ℓ we have � λ x i i � = 1 . i =1 Example (Easy) For any i , j , k ∈ Z such that i + j + k = 0 and ( i , j , k ) � = (0 , 0 , 0), it follows that 2 i 3 j 5 k � = 1 . 35 / 43

  66. Lattice Condition: Another Example Example (Medium) For any i , j , k ∈ Z such that i + j + k = 0 and ( i , j , k ) � = (0 , 0 , 0), it follows that √ √ � j � � k 1 i � 3 − 3 + 2 2 � = 1 . 36 / 43

  67. Lattice Condition: Another Example Example (Medium) For any i , j , k ∈ Z such that i + j + k = 0 and ( i , j , k ) � = (0 , 0 , 0), it follows that √ √ √ � j − k � j � � k 1 i � 7 k = 1 i � 3 − 3 + 2 3 + 2 2 � = 1 . 36 / 43

  68. Lattice Condition: Another Example Example (Medium) For any i , j , k ∈ Z such that i + j + k = 0 and ( i , j , k ) � = (0 , 0 , 0), it follows that √ √ √ � j − k � j � � k 1 i � 7 k = 1 i � 3 − 3 + 2 3 + 2 2 � = 1 . Suppose √ � j − k 1 i � 7 k = 1 . 3 + 2 36 / 43

  69. Lattice Condition: Another Example Example (Medium) For any i , j , k ∈ Z such that i + j + k = 0 and ( i , j , k ) � = (0 , 0 , 0), it follows that √ √ √ � j − k � j � � k 1 i � 7 k = 1 i � 3 − 3 + 2 3 + 2 2 � = 1 . Suppose √ � j − k 1 i � 7 k = 1 . 3 + 2 Then j − k = 0 k = 0 j = 0 i = 0 . Contradiction! 36 / 43

  70. “Hard” Lattice Condition Example Want to prove: For all integers y ≥ 4, the roots of p ( x , y ) = x 5 − (2 y + 1) x 3 − ( y 2 + 2) x 2 + ( y − 1) yx + y 3 . satisfy the lattice condition. 37 / 43

  71. “Hard” Lattice Condition Example Want to prove: For all integers y ≥ 4, the roots of p ( x , y ) = x 5 − (2 y + 1) x 3 − ( y 2 + 2) x 2 + ( y − 1) yx + y 3 . satisfy the lattice condition. Lemma Let p ( x ) ∈ Q [ x ] be a polynomial of degree n ≥ 2 . If the Galois group of p over Q is S n or A n and 1 the roots of p do not all have the same complex norm, 2 then the roots of p satisfy the lattice condition. 37 / 43

  72. Factorizations and Roots Galois group of p over Q is S n or A n 38 / 43

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend