on the linear complexity of legendre sidelnikov sequences
play

On the Linear Complexity of Legendre-Sidelnikov Sequences Ming Su - PowerPoint PPT Presentation

M OTIVATION O UR C ONTRIBUTION On the Linear Complexity of Legendre-Sidelnikov Sequences Ming Su Nankai University, China Emerging Applications of Finite Fields, Linz, Dec. 12 M OTIVATION O UR C ONTRIBUTION Outline Motivation


  1. M OTIVATION O UR C ONTRIBUTION On the Linear Complexity of Legendre-Sidelnikov Sequences Ming Su Nankai University, China Emerging Applications of Finite Fields, Linz, Dec. 12

  2. M OTIVATION O UR C ONTRIBUTION Outline Motivation Legendre-Sidelnikov Sequence Definition of Linear Complexity The Linear Complexity of Character based Sequences Our Contribution Multiplicities of the Roots of Unity Linear Complexity of Legendre-Sidelnikov Sequence

  3. M OTIVATION O UR C ONTRIBUTION Background • Legendre Sequence For a prime p > 2 let ( s n ) be the Legendre sequence defined as � n � � 1 , = − 1 , s n = p n ≥ 0 , otherwise , 0 , � � . where denotes the Legendre symbol. p • Sidelnikov Sequence Let q be an odd prime power, g a primitive element of F q , and let η denote the quadratic character of F q , i.e., η ( g i ) = ( − 1 ) i , i = 0 , 1 , . . . , q − 2 . Then the Sidel’nikov (Lempel-Cohn-Eastman) sequence is defined: � 1 , if η ( g n + 1 ) = − 1 , s n = n = 0 , 1 , . . . . 0 , otherwise ,

  4. M OTIVATION O UR C ONTRIBUTION Background • Legendre Sequence For a prime p > 2 let ( s n ) be the Legendre sequence defined as � n � � 1 , = − 1 , s n = p n ≥ 0 , otherwise , 0 , � � . where denotes the Legendre symbol. p • Sidelnikov Sequence Let q be an odd prime power, g a primitive element of F q , and let η denote the quadratic character of F q , i.e., η ( g i ) = ( − 1 ) i , i = 0 , 1 , . . . , q − 2 . Then the Sidel’nikov (Lempel-Cohn-Eastman) sequence is defined: � 1 , if η ( g n + 1 ) = − 1 , s n = n = 0 , 1 , . . . . 0 , otherwise ,

  5. M OTIVATION O UR C ONTRIBUTION Definition of Legendre-Sidelnikov Sequence • We consider the n -periodic binary sequence ( s i ) : if ( i mod n ) ∈ P ,  1 ,  if ( i mod n ) ∈ Q ∗ ,  0 , s i = i ≥ 0 , “ i ” η ( g i + 1 ) 1 − p if ( i mod n ) ∈ R ,   , 2 where p is an odd prime and q is the power of an odd prime such that gcd ( p , q − 1 ) = 1. n = p ( q − 1 ) , P = { 0 , p , 2 p , . . . , ( q − 2 ) p } . q − 1 � � Q = + j ( q − 1 ) : j = 0 , . . . , p − 1 , 2 Q ∗ = Q \ { n 2 } because P ∩ Q = { n 2 } , R = { 0 , 1 , 2 , . . . , n − 1 } \ ( P ∪ Q ∗ ) .

  6. M OTIVATION O UR C ONTRIBUTION Properties of Legendre-Sidelnikov Sequence • This new sequence is balanced if p = q . • The autocorrelation of ( s i ) is given by q − 1 − ( p − 1 )(( − 1 ) l + 1 ) , l ∈ P \ { 0 } ,   ( − 1 ) ( q − 1 ) / 2 − 1      � 1 − ( − 1 ) ( q 2 − 1 ) / 8 � � l �  +  p    p − 1  � � l ∈ Q ∗ ,  1 + ( − 1 ) ,  2  AC ( s i , l )= 1 + ( − 1 ) ( p − 1 ) / 2 � � l � p − q − 2 + , l ∈ R , q − 1 | l , � p     l ( − 1 ) l − 1 + � � � 1 + ( − 1 ) ( p − 1 ) / 2   p    − η ( − g l + 1 )     ( 1 + ( − 1 ) ( p − 1 ) / 2 +( q − 1 ) / 2 + l ) l ∈ R , q − 1 � | l .  �  ,

  7. M OTIVATION O UR C ONTRIBUTION Properties of Legendre-Sidelnikov Sequence • This new sequence is balanced if p = q . • The autocorrelation of ( s i ) is given by q − 1 − ( p − 1 )(( − 1 ) l + 1 ) , l ∈ P \ { 0 } ,   ( − 1 ) ( q − 1 ) / 2 − 1      � 1 − ( − 1 ) ( q 2 − 1 ) / 8 � � l �  +  p    p − 1  � � l ∈ Q ∗ ,  1 + ( − 1 ) ,  2  AC ( s i , l )= 1 + ( − 1 ) ( p − 1 ) / 2 � � l � p − q − 2 + , l ∈ R , q − 1 | l , � p     l ( − 1 ) l − 1 + � � � 1 + ( − 1 ) ( p − 1 ) / 2   p    − η ( − g l + 1 )     ( 1 + ( − 1 ) ( p − 1 ) / 2 +( q − 1 ) / 2 + l ) l ∈ R , q − 1 � | l .  �  ,

  8. M OTIVATION O UR C ONTRIBUTION Definition of Linear Complexity The linear complexity L ( S ) over F 2 of a binary sequence ( s i ) is the shortest length L of a linear recurrence relation over F 2 s i + L = c L − 1 s i + L − 1 + . . . + c 0 s i , 0 ≤ i ≤ N − L − 1 .

  9. M OTIVATION O UR C ONTRIBUTION On the Linear Complexity • The linear complexity should be large enough, i. e., larger than half of the period, resisting the Berlekamp-Massey attack • Algebraic expression of the linear complexity of S: L ( S ) = N − deg ( gcd ( X N − 1 , S ( X ))) , where the generating polynomial S ( X ) := s 0 + s 1 X + . . . + s N − 1 X N − 1 .

  10. M OTIVATION O UR C ONTRIBUTION On the Linear Complexity • The linear complexity should be large enough, i. e., larger than half of the period, resisting the Berlekamp-Massey attack • Algebraic expression of the linear complexity of S: L ( S ) = N − deg ( gcd ( X N − 1 , S ( X ))) , where the generating polynomial S ( X ) := s 0 + s 1 X + . . . + s N − 1 X N − 1 .

  11. M OTIVATION O UR C ONTRIBUTION Linear Complexity of Other Character Sequences • Legendre sequence ( Ding, Helleseth, Shan ) By using quadratic residues and nonresidues • Sidelnikov sequence ( Helleseth, Yang; Kyureghyan, Pott; Meidl, Winterhof ) In some cases by using results on certain cyclotomic numbers and the factorization of some cyclotomic polynomials • Generalized Cyclotomic binary sequence of order 2 (Ding) By using properties of cyclotomic cosets • Two prime generators( Brandstatter, Winterhof; Ding ); Two prime Sidelnikov sequence( Brandstatter, Pirsic, Winterhof )

  12. M OTIVATION O UR C ONTRIBUTION Linear Complexity of Other Character Sequences • Legendre sequence ( Ding, Helleseth, Shan ) By using quadratic residues and nonresidues • Sidelnikov sequence ( Helleseth, Yang; Kyureghyan, Pott; Meidl, Winterhof ) In some cases by using results on certain cyclotomic numbers and the factorization of some cyclotomic polynomials • Generalized Cyclotomic binary sequence of order 2 (Ding) By using properties of cyclotomic cosets • Two prime generators( Brandstatter, Winterhof; Ding ); Two prime Sidelnikov sequence( Brandstatter, Pirsic, Winterhof )

  13. M OTIVATION O UR C ONTRIBUTION Linear Complexity of Other Character Sequences • Legendre sequence ( Ding, Helleseth, Shan ) By using quadratic residues and nonresidues • Sidelnikov sequence ( Helleseth, Yang; Kyureghyan, Pott; Meidl, Winterhof ) In some cases by using results on certain cyclotomic numbers and the factorization of some cyclotomic polynomials • Generalized Cyclotomic binary sequence of order 2 (Ding) By using properties of cyclotomic cosets • Two prime generators( Brandstatter, Winterhof; Ding ); Two prime Sidelnikov sequence( Brandstatter, Pirsic, Winterhof )

  14. M OTIVATION O UR C ONTRIBUTION Linear Complexity of Other Character Sequences • Legendre sequence ( Ding, Helleseth, Shan ) By using quadratic residues and nonresidues • Sidelnikov sequence ( Helleseth, Yang; Kyureghyan, Pott; Meidl, Winterhof ) In some cases by using results on certain cyclotomic numbers and the factorization of some cyclotomic polynomials • Generalized Cyclotomic binary sequence of order 2 (Ding) By using properties of cyclotomic cosets • Two prime generators( Brandstatter, Winterhof; Ding ); Two prime Sidelnikov sequence( Brandstatter, Pirsic, Winterhof )

  15. M OTIVATION O UR C ONTRIBUTION Linear Complexity of this Sequence? • Intuitively p (related to the Legendre sequence) and q (Sidelnikov) should both contribute ‘equivalently’. • Can we determine the exact linear complexity?

  16. M OTIVATION O UR C ONTRIBUTION Linear Complexity of this Sequence? • Intuitively p (related to the Legendre sequence) and q (Sidelnikov) should both contribute ‘equivalently’. • Can we determine the exact linear complexity?

  17. M OTIVATION O UR C ONTRIBUTION Linear Complexity of this Sequence? • Intuitively p (related to the Legendre sequence) and q (Sidelnikov) should both contribute ‘equivalently’. • Can we determine the exact linear complexity?

  18. M OTIVATION O UR C ONTRIBUTION Generating Polynomial of Legendre-Sidelnikov Sequence Note that X n − 1 = ( X rp − 1 ) 2 , where r = q − 1 2 . Next we discuss the multiplicities of 1, β ( r th root of unity), α ( p th root of unity), and other pr th roots of unity for S ( X ) .

  19. M OTIVATION O UR C ONTRIBUTION Generating Polynomial of Legendre-Sidelnikov Sequence Note that X n − 1 = ( X rp − 1 ) 2 , where r = q − 1 2 . Next we discuss the multiplicities of 1, β ( r th root of unity), α ( p th root of unity), and other pr th roots of unity for S ( X ) .

  20. M OTIVATION O UR C ONTRIBUTION On the multiplicity of 1 Lemma A If p ≡ 1 ( mod 4 ) , then for k ≥ 1 satisfying 2 t − 1 ≤ k < 2 t + 1 − 1 with some positive integer t , we have S ( j ) ( 1 ) = 0 for all j ≤ k if and only if q ≡ 1 ( mod 2 t + 1 ) . Equivalently, if p ≡ 3 ( mod 4 ) , 1 is not a root of S ( X ) ; if p ≡ 1 ( mod 4 ) , and q ≡ 1 ( mod 2 l ) for the maximal integer l , the multiplicity of the root 1 is 2 l − 1. Proof: Suppose the conclusion is true for 2 t − 1 ≤ k < 2 t + 1 − 1 on some t . Then for k = 2 t + 1 − 1, by Lucas property and Hasse derivative p ( q − 1 ) − 1 p ( q − 1 ) − 1 � i � S ( k ) ( 1 ) = � s i = � s i k i = 0 i = 0 i ≡ 2 t + 1 − 1 ( mod 2 t + 1 ) � i � η ( g i + 1 ) . s i + � � = p i ∈ P i ∈ Z n i ≡ 2 t + 1 − 1 ( mod 2 t + 1 ) i ≡ 2 t + 1 − 1 ( mod 2 t + 1 )

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend