orthogonal functions the legendre laguerre and hermite
play

Orthogonal Functions: The Legendre, Laguerre, and Hermite - PowerPoint PPT Presentation

General Orthogonality Legendre Polynomials Sturm-Liouville Conclusion Orthogonal Functions: The Legendre, Laguerre, and Hermite Polynomials Thomas Coverson 1 Savarnik Dixit 3 Alysha Harbour 2 Tyler Otto 3 1 Department of Mathematics Morehouse


  1. General Orthogonality Legendre Polynomials Sturm-Liouville Conclusion Orthogonal Functions: The Legendre, Laguerre, and Hermite Polynomials Thomas Coverson 1 Savarnik Dixit 3 Alysha Harbour 2 Tyler Otto 3 1 Department of Mathematics Morehouse College 2 Department of Mathematics University of Texas at Austin 3 Department of Mathematics Louisiana State University SMILE REU Summer 2010 Coverson, Dixit, Harbour, Otto Orth.Funct. Leg., Lag. Hermite.

  2. General Orthogonality Legendre Polynomials Sturm-Liouville Conclusion Outline General Orthogonality 1 Legendre Polynomials 2 3 Sturm-Liouville Conclusion 4 Coverson, Dixit, Harbour, Otto Orth.Funct. Leg., Lag. Hermite.

  3. General Orthogonality Legendre Polynomials Sturm-Liouville Conclusion Overview When discussed in R 2 , vectors are said to be orthogonal when the dot product is equal to 0. w · ˆ ˆ v = w 1 v 1 + w 2 v 2 = 0 . Coverson, Dixit, Harbour, Otto Orth.Funct. Leg., Lag. Hermite.

  4. General Orthogonality Legendre Polynomials Sturm-Liouville Conclusion Overview Definition � b We define an inner product ( y 1 | y 2 ) = a y 1 ( x ) y 2 ( x ) dx where y 1 , y 2 ∈ C 2 [ a , b ] . Definition Two functions are said to be orthogonal if ( y 1 | y 2 ) = 0. Definition A linear operator L is self-adjoint if ( Ly 1 | y 2 ) = ( y 1 | Ly 2 ) for all y 1 , y 2 . Coverson, Dixit, Harbour, Otto Orth.Funct. Leg., Lag. Hermite.

  5. General Orthogonality Legendre Polynomials Sturm-Liouville Conclusion Trigonometric Functions and Fourier Series Orthogonality of the Sine and Cosine Functions Expansion of the Fourier Series ∞ f ( x ) = a 0 � 2 + ( a k cos kx + b k sin kx ) k = 1 Coverson, Dixit, Harbour, Otto Orth.Funct. Leg., Lag. Hermite.

  6. General Orthogonality Legendre Polynomials Sturm-Liouville Conclusion Legendre Polynomials Legendre Polynomials are usually derived from differential equations of the following form: ( 1 − x 2 ) y ′′ − 2 xy ′ + n ( n + 1 ) y = 0 We solve this equation using the standard power series method. Coverson, Dixit, Harbour, Otto Orth.Funct. Leg., Lag. Hermite.

  7. General Orthogonality Legendre Polynomials Sturm-Liouville Conclusion Legendre Polynomials Suppose y is analytic. Then we have ∞ � a k x k y ( x ) = k = 0 ∞ y ′ ( x ) = � a k + 1 ( k + 1 ) x k k = 0 ∞ y ′′ ( x ) = � a k + 2 ( k + 1 )( k + 2 ) x k k = 0 Coverson, Dixit, Harbour, Otto Orth.Funct. Leg., Lag. Hermite.

  8. General Orthogonality Legendre Polynomials Sturm-Liouville Conclusion Recursion Formula After implementing the power series method, the following recursion relation is obtained. a k + 2 ( k + 2 )( k + 1 ) − a k ( k )( k − 1 ) − 2 a k ( k ) − n ( n + 1 ) a k = 0 a k + 2 = a k [ k ( k + 1 ) − n ( n + 1 )] ( k + 2 )( k + 1 ) Using this equation, we get the coefficients for the Legendre polynomial solutions. Coverson, Dixit, Harbour, Otto Orth.Funct. Leg., Lag. Hermite.

  9. General Orthogonality Legendre Polynomials Sturm-Liouville Conclusion Legendre Polynomials L 0 ( x ) = 1 L 1 ( x ) = x L 2 ( x ) = 1 2 ( 3 x 2 − 1 ) L 3 ( x ) = 1 2 ( 5 x 3 − 3 x ) L 4 ( x ) = 1 8 ( 35 x 4 − 30 x 2 + 3 ) L 5 ( x ) = 1 8 ( 63 x 5 − 70 x 3 + 15 x ) Coverson, Dixit, Harbour, Otto Orth.Funct. Leg., Lag. Hermite.

  10. General Orthogonality Legendre Polynomials Sturm-Liouville Conclusion Legendre Graph Figure: Legendre Graph Coverson, Dixit, Harbour, Otto Orth.Funct. Leg., Lag. Hermite.

  11. General Orthogonality Legendre Polynomials Sturm-Liouville Conclusion Sturm-Liouville A Sturm-Liouville equation is a second-order linear differential equation of the form ( p ( x ) y ′ ) ′ + q ( x ) y + λ r ( x ) y = 0 p ( x ) y ′′ + p ′ ( x ) y ′ + q ( x ) y + λ r ( x ) y = 0 which allows us to find solutions that form an orthogonal system. Coverson, Dixit, Harbour, Otto Orth.Funct. Leg., Lag. Hermite.

  12. General Orthogonality Legendre Polynomials Sturm-Liouville Conclusion Sturm-Liouville cont. We can define a linear operator by Ly = ( p ( x ) y ′ ) ′ + q ( x ) y which gives the equation Ly + λ r ( x ) y = 0 . Coverson, Dixit, Harbour, Otto Orth.Funct. Leg., Lag. Hermite.

  13. General Orthogonality Legendre Polynomials Sturm-Liouville Conclusion Self-adjointness To obtain orthogonality, we want L to be self-adjoint. ( Ly 1 | y 2 ) = ( y 1 | Ly 2 ) which implies 0 = ( Ly 1 | y 2 ) − ( y 1 | Ly 2 ) 1 ) ′ + qy 1 | y 2 ) − ( y 1 | ( py ′ 2 ) ′ + qy 2 ) = (( py ′ � b ( p ′ y ′ 1 y 2 + py ′′ 1 y 2 + qy 1 y 2 − y 1 p ′ y ′ 2 − y 1 py ′′ = 2 − y 1 q 1 y 2 ) dx a Coverson, Dixit, Harbour, Otto Orth.Funct. Leg., Lag. Hermite.

  14. General Orthogonality Legendre Polynomials Sturm-Liouville Conclusion Self-adjointness � b ( p ′ y ′ 1 y 2 + py ′′ 1 y 2 − y 1 p ′ y ′ 2 − y 1 py ′′ = 2 ) dx a � b [ p ( y ′ 2 y 1 )] ′ dx 1 y 2 − y ′ = a = p ( b )( y ′ 1 ( b ) y 2 ( b ) − y ′ 2 ( b ) y 1 ( b )) − p ( a )( y 1 ( a ) y 2 ( a ) − y ′ 2 ( a ) y 1 ( a )) Coverson, Dixit, Harbour, Otto Orth.Funct. Leg., Lag. Hermite.

  15. General Orthogonality Legendre Polynomials Sturm-Liouville Conclusion Orthogonality Theorem Theorem If ( y 1 , λ 1 ) and ( y 2 , λ 2 ) are eigenpairs and λ 1 � = λ 2 then ( y 1 | y 2 ) r = 0 . Proof. ( Ly 1 | y 2 ) = ( y 1 | Ly 2 ) ( − λ 1 ry 1 | y 2 ) = ( y 1 | − λ 2 ry 2 ) � b � b y 1 y 2 rdx = λ 2 y 1 y 2 rdx λ 1 a a λ 1 ( y 1 | y 2 ) r = λ 2 ( y 1 | y 2 ) r ( y 1 | y 2 ) r = 0 Coverson, Dixit, Harbour, Otto Orth.Funct. Leg., Lag. Hermite.

  16. General Orthogonality Legendre Polynomials Sturm-Liouville Conclusion Legendre Polynomials - Orthogonality Recall the Legendre differential equation ( 1 − x 2 ) y ′′ − 2 xy ′ + n ( n + 1 ) y = 0 . So Ly = (( 1 − x 2 ) y ′ ) ′ λ = n ( n + 1 ) r ( x ) = 1 . We want L to be self-adjoint, so we must determine necessary boundary conditions. Coverson, Dixit, Harbour, Otto Orth.Funct. Leg., Lag. Hermite.

  17. General Orthogonality Legendre Polynomials Sturm-Liouville Conclusion Sturm-Liouville Problem - Legendre For any two functions f , g ∈ C [ − 1 , 1 ] , by the general theory, we get � 1 Lf ( x ) g ( x ) − f ( x ) Lg ( x ) dx − 1 � 1 (( 1 − x 2 ) f ′ ) ′ g ( x ) − f ( x )(( 1 − x 2 ) g ′ ) ′ dx = − 1 = [( 1 − x 2 )( f ′ g − g ′ f )] 1 − 1 = 0 . Coverson, Dixit, Harbour, Otto Orth.Funct. Leg., Lag. Hermite.

  18. General Orthogonality Legendre Polynomials Sturm-Liouville Conclusion Legendre Polynomials - Orthogonality Because ( 1 − x 2 ) = 0 when x = − 1 , 1 we know that L is self-adjoint on C [ − 1 , 1 ] .Hence we know that the Legendre polynomials are orthogonal by the orthogonality theorem stated earlier. Coverson, Dixit, Harbour, Otto Orth.Funct. Leg., Lag. Hermite.

  19. General Orthogonality Legendre Polynomials Sturm-Liouville Conclusion Hermite Polynomials For a Hermite Polynomial, we begin with the differential equation y ′′ − 2 xy ′ + 2 ny = 0 Coverson, Dixit, Harbour, Otto Orth.Funct. Leg., Lag. Hermite.

  20. General Orthogonality Legendre Polynomials Sturm-Liouville Conclusion Hermite Orthogonality First, we need to arrange the differential equation so it can be written in the form ( p ( x ) y ′ ) ′ + ( q ( x ) + λ r ( x )) y = 0 . We must find some r ( x ) by which we will multiply the equation. For the Hermite differential equation, we use r ( x ) = e − x 2 to get ( e − x 2 y ′ ) ′ + 2 ne − x 2 y = 0 ⇒ e − x 2 y ′′ − 2 xe − x 2 y ′ + 2 ne − x 2 y = = 0 Coverson, Dixit, Harbour, Otto Orth.Funct. Leg., Lag. Hermite.

  21. General Orthogonality Legendre Polynomials Sturm-Liouville Conclusion Hermite Orthogonality Sturm-Liouville problems can be written in the form Ly + λ r ( x ) y = 0 . In our case, Ly = ( e − x 2 y ′ ) ′ and λ r ( x ) = 2 ne − x 2 y . � ∞ 0 = ( Lf | g ) − ( f | Lg ) = Lf ( x ) g ( x ) − f ( x ) Lg ( x ) dx −∞ Coverson, Dixit, Harbour, Otto Orth.Funct. Leg., Lag. Hermite.

  22. General Orthogonality Legendre Polynomials Sturm-Liouville Conclusion Hermite Orthogonality So we get from the general theory that � ∞ ( e − x 2 f ′ ( x )) ′ g ( x ) − f ( x )( e − x 2 g ′ ( x )) ′ dx −∞ � ∞ [( e − x 2 )( f ′ ( x ) g ( x ) − g ′ ( x ) f ( x ))] ′ dx = −∞ Coverson, Dixit, Harbour, Otto Orth.Funct. Leg., Lag. Hermite.

  23. General Orthogonality Legendre Polynomials Sturm-Liouville Conclusion Hermite Orthogonality With further manipulation we obtain a →−∞ [( e − x 2 )( f ′ ( x ) g ( x ) − g ′ ( x ) f ( x ))] 0 lim a b →∞ [( e − x 2 )( f ′ ( x ) g ( x ) − g ′ ( x ) f ( x ))] b + lim 0 Coverson, Dixit, Harbour, Otto Orth.Funct. Leg., Lag. Hermite.

  24. General Orthogonality Legendre Polynomials Sturm-Liouville Conclusion Hermite Orthogonality We want x →±∞ e − x 2 f ( x ) g ′ ( x ) = 0 lim for all f , g ∈ BC 2 ( −∞ , ∞ ) . So we impose the following conditions on the space of functions we consider x →±∞ e − x 2 / 2 h ( x ) = 0 lim and x →±∞ e − x 2 / 2 h ′ ( x ) = 0 lim for all h ∈ C 2 ( −∞ , ∞ ) . Coverson, Dixit, Harbour, Otto Orth.Funct. Leg., Lag. Hermite.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend