on exact polya hilbert artin and putinar s representations
play

On Exact Polya, Hilbert-Artin and Putinars Representations Victor - PowerPoint PPT Presentation

On Exact Polya, Hilbert-Artin and Putinars Representations Victor Magron , LAAS CNRS Joint work with Mohab Safey El Din (Sorbonne Univ. -INRIA-LIP6 CNRS) JNCF 04 th February 2019 p p 1 4 ( 1 + x 2 + x 4 ) x Deciding Non-negativity X =


  1. On Exact Polya, Hilbert-Artin and Putinar’s Representations Victor Magron , LAAS CNRS Joint work with Mohab Safey El Din (Sorbonne Univ. -INRIA-LIP6 CNRS) JNCF 04 th February 2019 p p ε 1 4 ( 1 + x 2 + x 4 ) x

  2. Deciding Non-negativity X = ( X 1 , . . . , X n ) co-NP hard problem: check f � 0 on K f ∈ Q [ X ] Victor Magron On Exact Polya, Hilbert-Artin and Putinar’s Representations 1 / 27

  3. Deciding Non-negativity X = ( X 1 , . . . , X n ) co-NP hard problem: check f � 0 on K f ∈ Q [ X ] 1 Unconstrained � K = R n 2 Constrained � K = { x ∈ R n : g 1 ( x ) � 0, . . . , g m ( x ) � 0 } g j ∈ Q [ X ] deg f , deg g j � d [Collins 75] CAD doubly exp. in n poly. in d [Grigoriev-Vorobjov 88, Basu-Pollack-Roy 98] Critical points singly exponential time ( m + 1 ) τ d O ( n ) Victor Magron On Exact Polya, Hilbert-Artin and Putinar’s Representations 1 / 27

  4. Deciding Non-negativity Sums of squares (SOS) σ = h 12 + · · · + h p 2 Victor Magron On Exact Polya, Hilbert-Artin and Putinar’s Representations 2 / 27

  5. Deciding Non-negativity Sums of squares (SOS) σ = h 12 + · · · + h p 2 H ILBERT 17 TH P ROBLEM : f SOS of rational functions? [Artin 27] YES ! [Lasserre/Parrilo 01] Numerical solvers compute σ Semidefinite programming (SDP) � approximate certificates → ≃ = The Question of Exact Certification How to go from approximate to exact certification? Victor Magron On Exact Polya, Hilbert-Artin and Putinar’s Representations 2 / 27

  6. What is Semidefinite Programming? Linear Programming (LP): ⊤ z min c z s.t. A z � d . Linear cost c Polyhedron Linear inequalities “ ∑ i A ij z j � d i ” Victor Magron On Exact Polya, Hilbert-Artin and Putinar’s Representations 3 / 27

  7. What is Semidefinite Programming? Semidefinite Programming (SDP): ⊤ z min c z ∑ s.t. F i z i � F 0 . i Linear cost c Symmetric matrices F 0 , F i Spectrahedron Linear matrix inequalities “ F � 0 ” ( F has nonnegative eigenvalues) Victor Magron On Exact Polya, Hilbert-Artin and Putinar’s Representations 3 / 27

  8. What is Semidefinite Programming? Semidefinite Programming (SDP): ⊤ z min c z ∑ s.t. F i z i � F 0 , A z = d . i Linear cost c Symmetric matrices F 0 , F i Spectrahedron Linear matrix inequalities “ F � 0 ” ( F has nonnegative eigenvalues) Victor Magron On Exact Polya, Hilbert-Artin and Putinar’s Representations 3 / 27

  9. Lasserre’s Hierarchy Prove polynomial inequalities with SDP: f ( a , b ) : = a 2 − 2 ab + b 2 � 0 . � � � � � � z 1 z 2 a Find z s.t. f ( a , b ) = a b . z 2 z 3 b � �� � � 0 Find z s.t. a 2 − 2 ab + b 2 = z 1 a 2 + 2 z 2 ab + z 3 b 2 ( A z = d ) � z 1 � � 1 � � 0 � � 0 � � 0 � z 2 0 1 0 0 = z 1 + z 2 + z 3 � z 2 z 3 0 0 1 0 0 1 0 0 � �� � � �� � � �� � � �� � F 1 F 2 F 3 F 0 Victor Magron On Exact Polya, Hilbert-Artin and Putinar’s Representations 4 / 27

  10. Lasserre’s Hierarchy Choose a cost c e.g. ( 1, 0, 1 ) and solve: ⊤ z min c z ∑ A z = d . s.t. F i z i � F 0 , i � 1 � z 1 � � − 1 z 2 Solution = � 0 (eigenvalues 0 and 2) z 2 z 3 − 1 1 � � 1 � � a � − 1 a 2 − 2 ab + b 2 = � = ( a − b ) 2 . a b − 1 1 b � �� � � 0 Solving SDP = ⇒ Finding S UMS OF S QUARES certificates Victor Magron On Exact Polya, Hilbert-Artin and Putinar’s Representations 5 / 27

  11. Lasserre’s Hierarchy NP hard General Problem : f ∗ : = min x ∈ K f ( x ) Semialgebraic set K : = { x ∈ R n : g 1 ( x ) � 0, . . . , g m ( x ) � 0 } Victor Magron On Exact Polya, Hilbert-Artin and Putinar’s Representations 6 / 27

  12. Lasserre’s Hierarchy NP hard General Problem : f ∗ : = min x ∈ K f ( x ) Semialgebraic set K : = { x ∈ R n : g 1 ( x ) � 0, . . . , g m ( x ) � 0 } � : = [ 0, 1 ] 2 = { x ∈ R 2 : x 1 ( 1 − x 1 ) � 0, x 2 ( 1 − x 2 ) � 0 } Victor Magron On Exact Polya, Hilbert-Artin and Putinar’s Representations 6 / 27

  13. Lasserre’s Hierarchy NP hard General Problem : f ∗ : = min x ∈ K f ( x ) Semialgebraic set K : = { x ∈ R n : g 1 ( x ) � 0, . . . , g m ( x ) � 0 } � : = [ 0, 1 ] 2 = { x ∈ R 2 : x 1 ( 1 − x 1 ) � 0, x 2 ( 1 − x 2 ) � 0 } σ 0 σ 1 σ 2 � �� � g 1 g 2 ���� ���� f � � 2 x 1 x 2 = − 1 1 x 1 + x 2 − 1 1 � �� � 1 � �� � ���� 8 + + x 1 ( 1 − x 1 ) + x 2 ( 1 − x 2 ) 2 2 2 2 Victor Magron On Exact Polya, Hilbert-Artin and Putinar’s Representations 6 / 27

  14. Lasserre’s Hierarchy NP hard General Problem : f ∗ : = min x ∈ K f ( x ) Semialgebraic set K : = { x ∈ R n : g 1 ( x ) � 0, . . . , g m ( x ) � 0 } � : = [ 0, 1 ] 2 = { x ∈ R 2 : x 1 ( 1 − x 1 ) � 0, x 2 ( 1 − x 2 ) � 0 } σ 0 σ 1 σ 2 � �� � g 1 g 2 ���� ���� f � � 2 x 1 x 2 = − 1 1 x 1 + x 2 − 1 1 � �� � 1 � �� � ���� 8 + + x 1 ( 1 − x 1 ) + x 2 ( 1 − x 2 ) 2 2 2 2 Σ = Sums of squares (SOS) σ i Victor Magron On Exact Polya, Hilbert-Artin and Putinar’s Representations 6 / 27

  15. Lasserre’s Hierarchy NP hard General Problem : f ∗ : = min x ∈ K f ( x ) Semialgebraic set K : = { x ∈ R n : g 1 ( x ) � 0, . . . , g m ( x ) � 0 } � : = [ 0, 1 ] 2 = { x ∈ R 2 : x 1 ( 1 − x 1 ) � 0, x 2 ( 1 − x 2 ) � 0 } σ 0 σ 1 σ 2 � �� � g 1 g 2 ���� ���� f � � 2 x 1 x 2 = − 1 1 x 1 + x 2 − 1 1 � �� � 1 � �� � ���� 8 + + x 1 ( 1 − x 1 ) + x 2 ( 1 − x 2 ) 2 2 2 2 Σ = Sums of squares (SOS) σ i Bounded degree: � � σ 0 + ∑ m Q d ( K ) : = j = 1 σ j g j , with deg σ j g j � 2 d Victor Magron On Exact Polya, Hilbert-Artin and Putinar’s Representations 6 / 27

  16. Lasserre’s Hierarchy Hierarchy of SDP relaxations : � � λ d : = sup λ : f − λ ∈ Q d ( K ) Convergence guarantees λ d ↑ f ∗ [Lasserre 01] Can be computed with SDP solvers ( CSDP , SDPA ) “No Free Lunch” Rule : ( n + 2 d n ) SDP variables Victor Magron On Exact Polya, Hilbert-Artin and Putinar’s Representations 7 / 27

  17. Certifying Non-negativity A PPROXIMATE SOLUTIONS sum of squares of a 2 − 2 ab + b 2 ? ( 1.00001 a − 0.99998 b ) 2 ! a 2 − 2 ab + b 2 ≃ ( 1.00001 a − 0.99998 b ) 2 a 2 − 2 ab + b 2 � = 1.0000200001 a 2 − 1.9999799996 ab + 0.9999600004 b 2 → = ? ≃ Victor Magron On Exact Polya, Hilbert-Artin and Putinar’s Representations 8 / 27

  18. Certifying Non-negativity σ f = 1 Polya ’s representation ( X 2 1 + ··· + X 2 n ) D positive definite form f [Reznick 95] f = σ 2 Hilbert-Artin ’s representation h 2 f � 0 [Artin 27] 3 Putinar ’s representation f = σ 0 + σ 1 g 1 + · · · + σ m g m f > 0 on compact K deg σ i � 2 D [Putinar 93] Victor Magron On Exact Polya, Hilbert-Artin and Putinar’s Representations 9 / 27

  19. One Answer when K = R n Hybrid S YMBOLIC /N UMERIC methods [Peyrl-Parrilo 08] [Kaltofen-Yang-Zhi 08] � can handle degenerate situations when f ∈ ∂ Σ f ( X ) ≃ v DT ( X ) ˜ ˜ Q v D ( X ) Q � 0 v D ( X ) : vector of monomials of deg � D Victor Magron On Exact Polya, Hilbert-Artin and Putinar’s Representations 10 / 27

  20. One Answer when K = R n Hybrid S YMBOLIC /N UMERIC methods [Peyrl-Parrilo 08] [Kaltofen-Yang-Zhi 08] � can handle degenerate situations when f ∈ ∂ Σ f ( X ) ≃ v DT ( X ) ˜ ˜ Q v D ( X ) Q � 0 v D ( X ) : vector of monomials of deg � D → ≃ = ˜ Q Rounding Q Projection ∏ ( Q ) f ( X ) = v DT ( X ) ∏ ( Q ) v D ( X ) ∏ ( Q ) � 0 when ε → 0 Victor Magron On Exact Polya, Hilbert-Artin and Putinar’s Representations 10 / 27

  21. One Answer when K = R n Hybrid S YMBOLIC /N UMERIC methods [Peyrl-Parrilo 08] [Kaltofen-Yang-Zhi 08] � can handle degenerate situations when f ∈ ∂ Σ f ( X ) ≃ v DT ( X ) ˜ ˜ Q v D ( X ) Q � 0 v D ( X ) : vector of monomials of deg � D → ≃ = ˜ Q Rounding Q Projection ∏ ( Q ) f ( X ) = v DT ( X ) ∏ ( Q ) v D ( X ) ∏ ( Q ) � 0 when ε → 0 C OMPLEXITY ? Victor Magron On Exact Polya, Hilbert-Artin and Putinar’s Representations 10 / 27

  22. One Answer when K = { x ∈ R n : g j ( x ) � 0 } Hybrid S YMBOLIC /N UMERIC methods Magron-Allamigeon-Gaubert-Werner 14 f ≃ ˜ σ 0 + ˜ σ 1 g 1 + · · · + ˜ σ m g m u = f − ˜ σ 0 + ˜ σ 1 g 1 + · · · + ˜ σ m g m Victor Magron On Exact Polya, Hilbert-Artin and Putinar’s Representations 11 / 27

  23. One Answer when K = { x ∈ R n : g j ( x ) � 0 } Hybrid S YMBOLIC /N UMERIC methods Magron-Allamigeon-Gaubert-Werner 14 Compact K ⊆ [ 0, 1 ] n f ≃ ˜ σ 0 + ˜ σ 1 g 1 + · · · + ˜ σ m g m u = f − ˜ σ 0 + ˜ σ 1 g 1 + · · · + ˜ σ m g m → ≃ = ∀ x ∈ [ 0, 1 ] n , u ( x ) � − ε min K f � ε when ε → 0 C OMPLEXITY ? Victor Magron On Exact Polya, Hilbert-Artin and Putinar’s Representations 11 / 27

  24. Related Work: Exact Methods Existence Question Does there exist h i ∈ Q [ X ] , c i ∈ Q > 0 s.t. f = ∑ i c i h i 2 ? Victor Magron On Exact Polya, Hilbert-Artin and Putinar’s Representations 12 / 27

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend