interpolating between hilbert samuel and hilbert kunz
play

Interpolating Between Hilbert-Samuel and Hilbert-Kunz Multiplicity - PowerPoint PPT Presentation

Interpolating Between Hilbert-Samuel and Hilbert-Kunz Multiplicity William D. Taylor University of Arkansas KUMUNUjr, April 8, 2017 William D. Taylor (U. Arkansas) Interpolating Between e ( I ) and e HK ( I ) KUMUNUjr 2017 1 / 12 Setting and


  1. Interpolating Between Hilbert-Samuel and Hilbert-Kunz Multiplicity William D. Taylor University of Arkansas KUMUNUjr, April 8, 2017 William D. Taylor (U. Arkansas) Interpolating Between e ( I ) and e HK ( I ) KUMUNUjr 2017 1 / 12

  2. Setting and Notation ( R , m ) is a local ring of characteristic p > 0 and dimension d I ⊆ R is an m -primary ideal of R λ ( M ) denotes the length of the R -module M Definition The Hilbert-Samuel multiplicity of I is defined to be d ! · λ ( R / I n ) e ( I ) = lim . n d n →∞ The Hilbert-Kunz multiplicity of I is defined to be R / I [ p e ] � � λ e HK ( I ) = lim . p ed e →∞ William D. Taylor (U. Arkansas) Interpolating Between e ( I ) and e HK ( I ) KUMUNUjr 2017 2 / 12

  3. Properties of e ( I ) and e HK ( I ) 1 If I = J , then e ( I ) = e ( J ) 2 If I ∗ = J ∗ , then e HK ( I ) = e HK ( J ) 3 If R is regular then e ( m ) = e HK ( m ) = 1 4 There is an Associativity Formula relating each multiplicity to the multiplicity after quotienting by the set of primes of maximal dimension. Theorem (Rees ‘61, Hochster-Huneke ‘90) If R is a complete domain and I ⊆ J, then the converses of 1 and 2 hold. William D. Taylor (U. Arkansas) Interpolating Between e ( I ) and e HK ( I ) KUMUNUjr 2017 3 / 12

  4. Definition of s -multiplicity Remark Let s be a positive real number. If s is small, then for e ≫ 0, I ⌈ sp e ⌉ ⊇ I [ p e ] , William D. Taylor (U. Arkansas) Interpolating Between e ( I ) and e HK ( I ) KUMUNUjr 2017 4 / 12

  5. Definition of s -multiplicity Remark Let s be a positive real number. If s is small, then for e ≫ 0, I ⌈ sp e ⌉ ⊇ I [ p e ] , hence I ⌈ sp e ⌉ + I [ p e ] = I ⌈ sp e ⌉ , William D. Taylor (U. Arkansas) Interpolating Between e ( I ) and e HK ( I ) KUMUNUjr 2017 4 / 12

  6. Definition of s -multiplicity Remark Let s be a positive real number. If s is small, then for e ≫ 0, I ⌈ sp e ⌉ ⊇ I [ p e ] , hence I ⌈ sp e ⌉ + I [ p e ] = I ⌈ sp e ⌉ , R / ( I ⌈ sp e ⌉ + I [ p e ] ) R / I ⌈ sp e ⌉ � � � � = s d λ = λ hence lim d ! e ( I ). p ed p ed e →∞ William D. Taylor (U. Arkansas) Interpolating Between e ( I ) and e HK ( I ) KUMUNUjr 2017 4 / 12

  7. Definition of s -multiplicity Remark Let s be a positive real number. If s is small, then for e ≫ 0, I ⌈ sp e ⌉ ⊇ I [ p e ] , hence I ⌈ sp e ⌉ + I [ p e ] = I ⌈ sp e ⌉ , R / ( I ⌈ sp e ⌉ + I [ p e ] ) R / I ⌈ sp e ⌉ � � � � = s d λ = λ hence lim d ! e ( I ). p ed p ed e →∞ Similarly, If s is large, then for e ≫ 0, I ⌈ sp e ⌉ ⊆ I [ p e ] , hence I ⌈ sp e ⌉ + I [ p e ] = I [ p e ] , R / ( I ⌈ sp e ⌉ + I [ p e ] ) R / I [ p e ] � � � � λ λ hence lim = lim = e HK ( I ). p ed p ed e →∞ e →∞ William D. Taylor (U. Arkansas) Interpolating Between e ( I ) and e HK ( I ) KUMUNUjr 2017 4 / 12

  8. Definition of s -multiplicity Definition (-) For a positive real number s , the s-multiplicity of I is R / ( I ⌈ sp e ⌉ + I [ p e ] ) � � λ e s ( I ) = lim p ed H s ( d ) e →∞ where ⌊ s ⌋ ( − 1) i � d � � ( s − i ) d . H s ( d ) = d ! i i =0 William D. Taylor (U. Arkansas) Interpolating Between e ( I ) and e HK ( I ) KUMUNUjr 2017 5 / 12

  9. Properties of s -multiplicity Proposition (-) The function e s ( I ) has the following properties: 1 e s ( I ) is a continuous function of s. 2 If s is sufficiently small, then e s ( I ) = e ( I ) . 3 If s is sufficiently large, then e s ( I ) = e HK ( I ) . 4 If R is regular, then e s ( m ) = 1 for all s. William D. Taylor (U. Arkansas) Interpolating Between e ( I ) and e HK ( I ) KUMUNUjr 2017 6 / 12

  10. Properties of s -multiplicity Proposition (-) The function e s ( I ) has the following properties: 1 e s ( I ) is a continuous function of s. 2 If s ≤ 1 , then e s ( I ) = e ( I ) . 3 If s ≥ d, then e s ( I ) = e HK ( I ) . 4 If R is regular, then e s ( m ) = 1 for all s. William D. Taylor (U. Arkansas) Interpolating Between e ( I ) and e HK ( I ) KUMUNUjr 2017 7 / 12

  11. The Associativity Formula Theorem (-) If s is any positive real number, then e R / p � e s ( I ) = ( I ( R / p )) λ R p ( R p ) s p ∈ Assh R where Assh R = { p ∈ Spec R | dim R / p = dim R } . This theorem generalizes the Associativity Formulae for the Hilbert-Samuel and Hilbert-Kunz multiplicities. William D. Taylor (U. Arkansas) Interpolating Between e ( I ) and e HK ( I ) KUMUNUjr 2017 8 / 12

  12. Closures Recall: If I = J , then e ( I ) = e ( J ) If I ∗ = J ∗ , then e HK ( I ) = e HK ( J ) If I ⊆ J and R is “nice”, then the converse holds. William D. Taylor (U. Arkansas) Interpolating Between e ( I ) and e HK ( I ) KUMUNUjr 2017 9 / 12

  13. Closures Recall: If I = J , then e ( I ) = e ( J ) If I ∗ = J ∗ , then e HK ( I ) = e HK ( J ) If I ⊆ J and R is “nice”, then the converse holds. Question: Are there closures that similarly relate to s -multiplicity? William D. Taylor (U. Arkansas) Interpolating Between e ( I ) and e HK ( I ) KUMUNUjr 2017 9 / 12

  14. Closures Recall: If I = J , then e ( I ) = e ( J ) If I ∗ = J ∗ , then e HK ( I ) = e HK ( J ) If I ⊆ J and R is “nice”, then the converse holds. Question: Are there closures that similarly relate to s -multiplicity? Answer: Yes, we call them s -closures. William D. Taylor (U. Arkansas) Interpolating Between e ( I ) and e HK ( I ) KUMUNUjr 2017 9 / 12

  15. s -closures Definition (-) Let s ≥ 1. We say x ∈ I cl s , the s -closure of I , if there exists c not in any minimal prime of R such that cx p e ∈ I ⌈ sp e ⌉ + I [ p e ] . for all e ≫ 0 , Remark When s = 1, s -closure is integral closure. When s ≥ d , s -closure is tight closure. As s increases, the s -closures get smaller. William D. Taylor (U. Arkansas) Interpolating Between e ( I ) and e HK ( I ) KUMUNUjr 2017 10 / 12

  16. s -closures Question: Do any new closures actually appear? William D. Taylor (U. Arkansas) Interpolating Between e ( I ) and e HK ( I ) KUMUNUjr 2017 11 / 12

  17. s -closures Question: Do any new closures actually appear? Short Answer: Yes! Example Let R = k [[ x , y ]], and let I = ( x 3 , y 3 ). Then ( x , y ) 3 = I  if s = 1   I cl s = ( x 3 , x 2 y 2 , y 3 ) if 1 < s ≤ 4 3  ( x 3 , y 3 ) = I ∗ if s > 4 3 .  William D. Taylor (U. Arkansas) Interpolating Between e ( I ) and e HK ( I ) KUMUNUjr 2017 11 / 12

  18. s -closures Question: Do any new closures actually appear? Short Answer: Yes! Example Let R = k [[ x , y ]], and let I = ( x 3 , y 3 ). Then ( x , y ) 3 = I  if s = 1   I cl s = ( x 3 , x 2 y 2 , y 3 ) if 1 < s ≤ 4 3  ( x 3 , y 3 ) = I ∗ if s > 4 3 .  Long Answer: In many cases, there are uncountably many distinct s -closures on a fixed ring R . William D. Taylor (U. Arkansas) Interpolating Between e ( I ) and e HK ( I ) KUMUNUjr 2017 11 / 12

  19. s -closures Theorem (-) Let I and J be m -primary ideals of R. If I cl s = J cl s , then e s ( I ) = e s ( J ) . If R is an F-finite complete domain and I ⊆ J, then the converse holds. William D. Taylor (U. Arkansas) Interpolating Between e ( I ) and e HK ( I ) KUMUNUjr 2017 12 / 12

  20. s -closures Theorem (-) Let I and J be m -primary ideals of R. If I cl s = J cl s , then e s ( I ) = e s ( J ) . If R is an F-finite complete domain and I ⊆ J, then the converse holds. Remark The proof of this theorem uses a nice result of Polstra and Tucker on limits related to positive characteristic rings. William D. Taylor (U. Arkansas) Interpolating Between e ( I ) and e HK ( I ) KUMUNUjr 2017 12 / 12

  21. s -closures Theorem (-) Let I and J be m -primary ideals of R. If I cl s = J cl s , then e s ( I ) = e s ( J ) . If R is an F-finite complete domain and I ⊆ J, then the converse holds. Remark The proof of this theorem uses a nice result of Polstra and Tucker on limits related to positive characteristic rings. Remark Extending the converse result to the non-domain case seems difficult. William D. Taylor (U. Arkansas) Interpolating Between e ( I ) and e HK ( I ) KUMUNUjr 2017 12 / 12

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend