the hilbert series of sqcd
play

The Hilbert Series of SQCD Matti J arvinen University of Crete 2 - PowerPoint PPT Presentation

The Hilbert Series of SQCD Matti J arvinen University of Crete 2 March 2012 1/26 Motivation: Hilbert series vs. Brane decay 1. Hilbert series of N = 1 supersymmetric QCD [Chen,Mekareeya arXiv:1104.2045] N c N c 1 d a 1 g


  1. The Hilbert Series of SQCD Matti J¨ arvinen University of Crete 2 March 2012 1/26

  2. Motivation: Hilbert series vs. Brane decay 1. Hilbert series of N = 1 supersymmetric QCD [Chen,Mekareeya arXiv:1104.2045] N c N c 1 d τ a 1 � � � g ( t , ˜ 2 π | ∆( z ) | 2 t ) = � N f (1 − ˜ N c ! 1 − tz − 1 tz a ) N f � a =1 a =1 a 2. (A contribution to the) emission amplitude for a closed string from a decaying brane (half S -brane) N N Z ( w ) = 1 d τ a � � 2 π | ∆( z ) | 2 � | 1 − wz a | 2 i ω N ! a =1 a =1 ◮ Same integrals (for t = ˜ t )! ◮ Our work: known results from brane decay applied to the Hilbert series (+some new results) [Jokela,MJ,Keski-Vakkuri, arXiv:1112.5454] 2/26

  3. Outline ◮ Introduction to Hilbert series (mostly stolen from Amihay Hanany’s talks) ◮ Defining SQCD Hilbert series ◮ Hilbert series and Schur polynomials ◮ Hilbert series of SQCD in the Veneziano limit: the log-gas approach 3/26

  4. Introduction to Hilbert Series Main idea: ◮ Hilbert series = generating function for numbers of gauge invariant BPS operators in N = 1 supersymmetric gauge theory ◮ For a theory having n U (1) symmetries � c k 1 ,..., k n t k 1 1 · · · t k n H ( t 1 , . . . , t n ) = n k 1 ,..., k n ◮ c k 1 ,..., k n : number of operators having charges k 1 , . . . , k n under the symmetries ◮ Variables t i termed “chemical potentials” or “fugacities” ◮ Admits a generalization to non-Abelian symmetries (definition however complicated. . . ) ◮ Usually one restricts to one Abelian fugacity t → operators counted by their dimension 4/26

  5. Introduction to Hilbert Series – Example Example: SQCD with SU (2) gauge group and N f = 1 1 1 − t 2 = 1 + t 2 + t 4 + t 6 + · · · H ( t ) = g ( t ) = ◮ One single-trace operator Q 1 Q 2 ◮ All operators of various degrees 1 , Q 1 Q 2 , ( Q 1 Q 2 ) 2 , ( Q 1 Q 2 ) 3 , . . . ◮ “Freely generated” moduli space, dimension one 5/26

  6. Introduction to Hilbert Series – Generic Features Q ( t ) P ( t ) H ( t ) = (1 − t ) k = (1 − t ) dim ( M ) ◮ Q ( t ), P ( t ) polynomials ◮ k is dimension of “embedding space” (For SQCD, mesonic+baryonic operators) ◮ dim ( M ), dimension of (classical) moduli space, equals the degree of the pole at t = 1 ◮ P ( t = 1) is “degree of M ” (AdS/CFT → volume of the dual Sasaki-Einstein manifold) 6/26

  7. Introduction to Hilbert Series – More Examples More SQCD examples ( N f , N c ) [Gray,He,Hanany,Mekareeya,Jejjala, arXiv:0803.4257] Palindromic property of P ( t ) ⇒ moduli space is a Calabi-Yau 7/26

  8. Introduction to Hilbert Series – Moduli Spaces Q ( t ) H ( t ) = (1 − t ) k Three families of moduli spaces: 1. Freely generated ( N c > N f ): Q ( t ) = 1 2. Complete intersection ( N c = N f ): Q ( t ) = 1 − t d 3. The rest ( N c < N f ) 8/26

  9. Introduction to Hilbert Series – Plethystics Plethystic exponential PE and logarithm PL = PE − 1 � ∞ � f ( t k ) � PE [ f ( t )] ≡ exp k k =1 Plethystic logarithm of H : ◮ Generators of the moduli space – first positive terms ◮ Relations of the moduli space – first negative terms For SQCD, taking the plethystic logarithm of H ( N f , N c ) ( t ): PL [ H (1 , 2) ( t )] = t 2 PL [ H (2 , 2) ( t )] = 6 t 2 − t 4 PL [ H (2 , 3) ( t )] = 4 t 2 PL [ H (3 , 2) ( t )] = 15 t 2 − 15 t 4 + 35 t 6 − · · · PL [ H (3 , 3) ( t )] = 9 t 2 + 2 t 3 − t 6 9/26

  10. The SQCD Hilbert Series – U(N) For U ( N c ) gauge group (simpler), refined Hilbert series � 2 π N c N c N f 1 d τ a 1 � 2 π | ∆( z ) | 2 � � g N f , U ( N c ) ( t i , ˜ t i ) = (1 − t i z − 1 N c ! a )(1 − ˜ t i z a ) 0 a =1 a =1 i =1 t i and z a = e i τ a are the flavor, “antiflavor” and color ◮ t i , ˜ fugacities, respectively ◮ ∆( z ) is the Vandermonde determinant Understanding the expression: ◮ � N c � N f 1 generates all operators involving Q a a =1 1 − t i z − 1 i =1 i a ◮ � N c � N f 1 t i z a generates all operators involving ˜ Q a a =1 i =1 1 − ˜ i � 2 π 2 π | ∆( z ) | 2 picks up gauge invariant terms � N c 1 d τ a ◮ a =1 N c ! 0 10/26

  11. The SQCD Hilbert Series – SU(N) For SU ( N c ), add a constraint for the phases τ a � 2 π N c ∞ � � 1 d τ a � � � 2 π | ∆( z ) | 2 g N f , SU ( N c ) ( t i , ˜ t i ) = δ τ a − 2 π k N c ! 0 a =1 a k = −∞ N f N c 1 � � × (1 − t i z − 1 a )(1 − ˜ t i z a ) a =1 i =1 Some notation (important to recall!): ◮ For U ( N f ) L fugacities (separation into SU ( N f ) L × U (1) Q ) � � x 1 , x 2 1 ( t 1 , t 2 , . . . , t N f ) ≡ , . . . , t ≡ (˜ x 1 , ˜ x 2 , . . . , ˜ x N f ) t x 1 x N f − 1 ◮ For U ( N f ) R fugacities � 1 � , y 1 (˜ t 1 , ˜ t 2 , . . . , ˜ ˜ y N f )˜ t N f ) ≡ t ≡ (˜ , . . . , y N f − 1 y 1 , ˜ y 2 , . . . , ˜ t y 1 y 2 11/26

  12. The SQCD Hilbert Series – Unrefining (Unrefined, standard) Hilbert series: set all x i = 1 = y j (or t = t 1 = · · · t n ), e.g. � 2 π N c N c t )= 1 d τ a � � a ) − N f (1 − g N f , U ( N c ) ( t , ˜ 2 π | ∆( z ) | 2 (1 − tz − 1 ˜ tz a ) − N f N c ! 0 a =1 a =1 Often in addition set t = ˜ t (the most interesting case) ⇒ real integrand 12/26

  13. The SQCD Hilbert Series – As Matrix Integral � 2 π N c N c t )= 1 d τ a � � a ) − N f (1 − 2 π | ∆( z ) | 2 (1 − tz − 1 tz a ) − N f g N f , U ( N c ) ( t , ˜ ˜ N c ! 0 a =1 a =1 � d µ U ( N c ) det( 1 − tU † ) − N f det( 1 − ˜ tU ) − N f = � � det( 1 − tU † ) − N f det( 1 − ˜ tU ) − N f = CUE ◮ An expectation value in the circular unitary ensemble ◮ d µ U ( N c ) is the Haar measure Integrals can be evaluated ⇒ Toeplitz determinant t )=det T [ f ] ≡ det(ˆ g N f , U ( N c ) ( t , ˜ f i − j ) i , j =1 ,..., N c with � ˜ t n � − N f � n ≥ 0 ˆ t ) = ( − 1) n f n ( t , ˜ 1; t ˜ 2 F 1 ( N f + | n | , N f , | n | + t ) × t − n | n | n < 0 [Chen,Mekareeya; Jokela,MJ,Keski-Vakkuri] However result cumbersome for N c � 3 13/26

  14. Hilbert Series & Schur Polynomials Schur polynomials: symmetric polynomials of n variables � z λ n − i +1 + i − 1 � det j i , j =1 ,..., n s λ ( z 1 , z 2 , . . . , z n ) = � � z i − 1 det j i , j =1 ,..., n z λ n z λ n z λ n � · · · � 1 2 n � � z λ n − 1 +1 z λ n − 1 +1 z λ n − 1 +1 � � · · · 1 � n � 1 2 = � � . . . . ∆( z ) � � . . � � � � z λ 1 + n − 1 z λ 1 + n − 1 z λ 1 + n − 1 · · · � � 1 2 n ◮ λ = ( λ 1 , . . . , λ n ) partition of | λ | = � i λ i or a Young diagram ◮ Example: λ = (2 , 1 , 1) = ( z 1 , z 2 , z 3 , z 4 ) = z 2 1 z 2 z 3 + z 1 z 2 2 z 3 + z 1 z 2 z 2 3 + z 2 s 1 z 2 z 4 + z 1 z 2 2 z 4 + z 2 1 z 3 z 4 +3 z 1 z 2 z 3 z 4 + z 2 2 z 3 z 4 + z 1 z 2 3 z 4 + z 2 z 2 3 z 4 + z 1 z 2 z 2 4 + z 1 z 3 z 2 4 + z 2 z 3 z 2 4 14/26

  15. Hilbert Series & Schur Polynomials – Properties The Schur polynomials have special properties ◮ Orthogonality ( z i = e i τ i ) � 2 π n 1 d τ i � 2 π | ∆( z ) | 2 s λ ( z 1 , . . . , z n ) s κ (¯ z 1 , . . . , ¯ z n ) = δ λ,κ n ! 0 i =1 ◮ The Cauchy identity n m 1 � � � = s λ ( z ) s λ ( w ) 1 − z i w j i =1 j =1 λ x 1 , x 2 1 � � ◮ s λ (˜ x 1 , ˜ x 2 , . . . , ˜ x N f ) = s λ x 1 , . . . , are characters of x Nf − 1 SU ( N f ) 15/26

  16. Hilbert Series & Schur Polynomials – Results Using the properties one easily proves an earlier conjecture for the refined Hilbert series of U ( N c ) SQCD: [Constable, Larsen, hep-th/0305177] � t ) | λ | s λ (˜ g N f , U ( N c ) ( t , ˜ ( t ˜ t , x , y ) = x ) s λ (˜ y ) λ : ℓ ( λ ) ≤ min( N f , N c ) ◮ ℓ ( λ ) is the width of the Young diagram λ For SU ( N c ) some extra algebra is required, giving ∞ � g N f , SU ( N c ) ( t , ˜ t , x , y ) = I k with k = −∞ �  t | λ | s λ (˜ t | κ | s κ (˜ x )˜ y ) δ λ,κ + k ; k ≥ 0 ,    λ,κ I k = � t | λ | s λ (˜ t | κ | s κ (˜ x )˜ y ) δ λ + | k | ,κ ; k < 0 .    λ,κ 16/26

  17. Hilbert Series & Schur Polynomials – U(N) Results In some cases one can use Cauchy identity to sum the series: ◮ For N f ≤ N c : (freely generated) N f N f 1 � � g N f , U ( N c ) ( t , ˜ t , x , y ) = 1 − t ˜ t ˜ x i ˜ y j i =1 j =1 ◮ For N f = N c + 1: (complete intersection) t ) N c +1 � N c +1 1 � � g N c +1 , U ( N c ) ( t , ˜ 1 − ( t ˜ t , x , y ) = 1 − t ˜ t ˜ x i ˜ y j i , j =1 ◮ N f = N c + 2 also calculable, a big mess ◮ These are new results! 17/26

  18. Hilbert Series & Schur Polynomials – SU Results ◮ For N f < N c : (freely generated) N f N f 1 � � g N f , SU ( N c ) ( t , ˜ t , x , y ) = 1 − t ˜ t ˜ x i ˜ y j i =1 j =1 ◮ For N f = N c : (complete intersection) N c N c t ) N c 1 − ( t ˜ 1 � � g N c , SU ( N c ) ( t , ˜ t , x , y ) = (1 − t N c ) (1 − ˜ 1 − t ˜ t N c ) t ˜ x i ˜ y j i =1 j =1 ◮ N f = N c + 1 also calculable, a big mess 18/26

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend