recursions and colored hilbert schemes
play

Recursions and Colored Hilbert Schemes Anna Brosowsky [Joint Work - PowerPoint PPT Presentation

Recursions and Colored Hilbert Schemes Recursions and Colored Hilbert Schemes Anna Brosowsky [Joint Work With: Nathaniel Gillman, Murray Pendergrass] [Mentor: Dr. Amin Gholampour] Cornell University 24 September 2016 WiMiN Smith College


  1. Recursions and Colored Hilbert Schemes Recursions and Colored Hilbert Schemes Anna Brosowsky [Joint Work With: Nathaniel Gillman, Murray Pendergrass] [Mentor: Dr. Amin Gholampour] Cornell University 24 September 2016 WiMiN Smith College 1/26

  2. Recursions and Colored Hilbert Schemes Outline Background 1 Recursion 2 Future Work 3 2/26

  3. Recursions and Colored Hilbert Schemes Background Outline Background 1 Recursion 2 Future Work 3 3/26

  4. Recursions and Colored Hilbert Schemes Background The Problem Object of Study: The Hilbert scheme of type ( m 0 , m 1 ) . Long Term Goal: Find the Poincar´ e polynomial of the punctual Hilbert scheme of type ( m 0 , m 1 ) . Why? The Poincar` e polynomial is a topological invariant , meaning it doesn’t change with stretching and bending. Short Term Goal: Count the points of the punctual Hilbert scheme of type ( m 0 , m 1 ) . Why? We can use this to find a generating function, which we can then use in the Weil conjectures, to find the Poincar´ e polynomial. 4/26

  5. Recursions and Colored Hilbert Schemes Background What is the punctual Hilbert scheme of type ( m 0 , m 1 ) ? We’ll first introduce some background: 1 Monomial ideals 2 Young diagrams 3 Group actions 4 Colored Young diagrams 5/26

  6. Recursions and Colored Hilbert Schemes Background Ideals Definition An ideal I ⊂ k [ x, y ] for a field k is a set of polynomials, but with a few rules attached: α, β ∈ I implies α + β ∈ I α ∈ I and m ∈ k [ x, y ] implies α · m ∈ I Theorem Every polynomial ideal can be written as � g 1 , . . . , g n � = { f 1 g 1 + · · · + f n g n | f i ∈ k [ x, y ] } , which is the set of all k [ x, y ] linear combinations of the g i . These g i are called the generators. 6/26

  7. Recursions and Colored Hilbert Schemes Background Monomial ideals Definition A monomial ideal is an ideal generated by monomials. Example � x � = { Ax | A ∈ k [ x, y ] } = { Ax 3 + By 3 | A, B ∈ k [ x, y ] } x 3 , y 3 � � are monomial ideals within the polynomial ring k [ x, y ] . � x + y � = { A ( x + y ) | A ∈ k [ x, y ] } is not a monomial ideal. 7/26

  8. Recursions and Colored Hilbert Schemes Background Young diagrams A Young diagram is a visual representation of a monomial ideal. Example We’ll construct a Young diagram for the monomial ideal x 4 , x 2 y, xy 3 , y 4 � � ⊂ k [ x, y ] ✻ y ♣ ♣ ♣ ♣ ♣ ♣ y 4 ♣ ♣ ♣ ♣ ♣ ♣ xy 3 ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ x 2 y ♣ ♣ ♣ ♣ ♣ ♣ x 4 ✲ ♣ ♣ ♣ ♣ ♣ ♣ x 8/26

  9. Recursions and Colored Hilbert Schemes Background Group actions Our Z 2 group action is defined by x �→ − x , y �→ − y Example Under the given transformation: 1 = x 0 y 0 �→ ( − x ) 0 ( − y ) 0 = 1 , ∴ 1 �→ 1 x 3 y 5 �→ ( − x ) 3 ( − y ) 5 = x 3 y 5 , ∴ x 3 y 5 �→ x 3 y 5 y 5 = x 0 y 5 �→ ( − x ) 0 ( − y ) 5 = − y 5 , ∴ y 5 �→ − y 5 and in general, x a y b �→ ( − 1) a + b x a y b 9/26

  10. Recursions and Colored Hilbert Schemes Background Colored Young diagrams We can combine the Young diagram and the group action to “color the Young diagram.” Procedure: 1 Draw the Young diagram as before 2 If the monomial for a box maps to itself, we “color” the box with a 0 3 If the monomial for a box maps to the negative of itself, we “color” the box with a 1 10/26

  11. Recursions and Colored Hilbert Schemes Background Example: coloring a Young diagram Example � x 4 , x 2 y, xy 3 , y 4 � Recall our previous ideal, ⊂ k [ x, y ] . We can see that 1 �→ 1 , x �→ − x , y �→ − y , xy �→ xy , etc. ✻ ✻ y y ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ 1 → ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ 0 1 ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ 1 0 ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ✲ 0 1 0 1 ✲ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ x x 11/26

  12. Recursions and Colored Hilbert Schemes Background And finally... the punctual Hilbert scheme The punctual Hilbert scheme of type ( m 0 , m 1 ) is defined as � � k [ x, y ] � k 2 = � Hilb ( m 0 ,m 1 ) I ⊆ k [ x, y ] ≃ m 0 ρ 0 + m 1 ρ 1 , V ( I ) = 0 � 0 I where k = F q is a finite field of order q . But the subset of k 2 made of monomial ideals looks like Hilb ( m 0 ,m 1 ) 0 { Young diagrams with m 0 0’s and m 1 1’s } 12/26

  13. Recursions and Colored Hilbert Schemes Background Example: punctual Hilbert scheme of type (4 , 5) Example x 4 , x 2 y, xy 3 , y 4 � � Recall the monomial ideal ⊂ k [ x, y ] . ✻ y ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ 1 ♣ ♣ ♣ ♣ ♣ 0 1 ♣ ♣ ♣ ♣ ♣ 1 0 ♣ ♣ ♣ ♣ ♣ 0 1 0 1 ✲ ♣ ♣ ♣ ♣ ♣ x is in Hilb (4 , 5) x 4 , x 2 y, xy 3 , y 4 � k 2 , since � By definition, the ideal 0 the ideal has 4 0’s and 5 1’s when represented as a colored Young diagram under our group action. 13/26

  14. Recursions and Colored Hilbert Schemes Recursion Outline Background 1 Recursion 2 Future Work 3 14/26

  15. Recursions and Colored Hilbert Schemes Recursion Stratified Hilbert schemes The stratified punctual Hilbert scheme of type ( m 0 , m 1 ) , ( d 0 , d 1 ) , written Hilb ( m 0 ,m 1 ) , ( d 0 ,d 1 ) k 2 , is a subset of Hilb ( m 0 ,m 1 ) k 2 . The 0 0 strata is determined by the first box outside the Young diagram in each row. d 0 = number of those boxes containing zero d 1 = number of those boxes containing one. 15/26

  16. Recursions and Colored Hilbert Schemes Recursion Stratified Hilbert scheme example Example ✻ y ♣ ♣ ♣ ♣ ♣ ♣ 1 0 ♣ ♣ ♣ ♣ ♣ ♣ 0 1 0 � y 4 , xy 3 , x 2 y, x 4 � ∈ Hilb (4 , 5) , (3 , 1) k 2 ♣ ♣ ♣ ♣ ♣ ♣ 1 0 1 0 ♣ ♣ ♣ ♣ ♣ ♣ 0 1 0 1 0 ✲ ♣ ♣ ♣ ♣ ♣ ♣ x k 2 = Hilb ( m 0 ,m 1 ) � Hilb ( m 0 ,m 1 ) , ( d 0 ,d 1 ) k 2 0 0 d 0 ,d 1 ≥ 0 k 2 = ⇒ #Hilb ( m 0 ,m 1 ) #Hilb ( m 0 ,m 1 ) , ( d 0 ,d 1 ) � k 2 0 0 d 0 ,d 1 ≥ 0 16/26

  17. Recursions and Colored Hilbert Schemes Recursion Example Example y ✻ ✻ y ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ 1 0 ♣ ♣ ♣ ♣ ♣ → 0 1 ♣ ♣ ♣ ♣ ♣ ♣ 0 1 0 ♣ ♣ ♣ ♣ ♣ 1 0 ♣ ♣ ♣ ♣ ♣ ♣ 1 0 1 ♣ ♣ ♣ ♣ ♣ 0 1 0 1 ✲ ♣ ♣ ♣ ♣ ♣ ♣ 0 1 0 1 0 ✲ ♣ ♣ ♣ ♣ ♣ x ♣ ♣ ♣ ♣ ♣ ♣ x y ✻ y ✻ → → ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ 0 1 0 0 1 ✲ ✲ ♣ ♣ ♣ ♣ ♣ ♣ ♣ x x 17/26

  18. Recursions and Colored Hilbert Schemes Recursion Recursion k 2 = q r · #Hilb ( m 0 − d 1 ,m 1 − d 0 ) , ( d ′ 0 ,d ′ 1 ) #Hilb ( m 0 ,m 1 ) , ( d 0 ,d 1 ) � k 2 0 0 0 ≤ d ′ 0 ≤ d 1 0 ≤ d ′ 1 ≤ d 0 0 = d 0 − d 1 +( − 1) ( d ′ 0+ d ′ 1) (( d ′ d ′ 1 − d ′ 0 + d ′ 1 + d 0 + d 1 )%2) where � d ′ if d 0 + d 1 ≡ 0 mod 2 0 r = d ′ if d 0 + d 1 ≡ 1 mod 2 1 Let a, b, c, d ∈ Z ≥ 0 . The base cases are k 2 = 0 k 2 = 0 #Hilb (0 ,b> 0) , ( c,d ) #Hilb ( a,b ) , ( c>b,d ) 0 0 k 2 = 0 k 2 = 0 #Hilb ( a,b ) , ( c,d>a ) #Hilb ( a � =0 ,b ) , (0 , 0) 0 0 k 2 = 1 #Hilb (0 , 0) , (0 , 0) 0 18/26

  19. Recursions and Colored Hilbert Schemes Recursion Why ( m 0 − d 1 , m 1 − d 0 ) ? Recurse by “chopping off” first column and sliding diagram over, then counting which ideals give same diagram Same as removing last block in each row 0 outside diagram ⇒ 1 in last box 1 outside diagram ⇒ 0 in last box Also requires d ′ 0 ≤ d 1 and d ′ 1 ≤ d 0 in smaller scheme 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 − → 19/26

  20. Recursions and Colored Hilbert Schemes Recursion Recursion k 2 = q r · #Hilb ( m 0 − d 1 ,m 1 − d 0 ) , ( d ′ 0 ,d ′ 1 ) #Hilb ( m 0 ,m 1 ) , ( d 0 ,d 1 ) � k 2 0 0 0 ≤ d ′ 0 ≤ d 1 0 ≤ d ′ 1 ≤ d 0 0 = d 0 − d 1 +( − 1) ( d ′ 0+ d ′ 1) (( d ′ d ′ 1 − d ′ 0 + d ′ 1 + d 0 + d 1 )%2) where � d ′ if d 0 + d 1 ≡ 0 mod 2 0 r = d ′ if d 0 + d 1 ≡ 1 mod 2 1 Let a, b, c, d ∈ Z ≥ 0 . The base cases are k 2 = 0 k 2 = 0 #Hilb (0 ,b> 0) , ( c,d ) #Hilb ( a,b ) , ( c>b,d ) 0 0 k 2 = 0 k 2 = 0 #Hilb ( a,b ) , ( c,d>a ) #Hilb ( a � =0 ,b ) , (0 , 0) 0 0 k 2 = 1 #Hilb (0 , 0) , (0 , 0) 0 20/26

  21. Recursions and Colored Hilbert Schemes Recursion Some Special Cases #Hilb ( k,k +1) , ( k +1 ,k − 1) k 2 = 1 0 #Hilb ( k,k +1) , ( k +1 ,k − 1) k 2 = 1 0 k 2 = q k #Hilb ( k,k ) , (1 , 0) 0 #Hilb ( k +1 ,k ) , (0 , 1) k 2 = q k 0 � k #Hilb ( k,k +1) , (2 , 0) k 2 = q k − 1 � 0 2 � k k 2 = #Hilb ( k +1 ,k ) , (0 , 2) � q k 0 2 21/26

  22. Recursions and Colored Hilbert Schemes Future Work Outline Background 1 Recursion 2 Future Work 3 22/26

  23. Recursions and Colored Hilbert Schemes Future Work Generating Function Prove Dr. Gholampour’s conjectured generating function for the number of points in the punctual Hilbert scheme of n points 1 � (#Hilb n 0 ,n 1 ) t n 0 0 t n 1 � 1 = (1 − q j − 1 ( t 0 t 1 ) j )(1 − q j ( t 0 t 1 ) j ) n 0 ,n 1 ≥ 0 j ≥ 1 t m 2 0 t m 2 + m � · 1 m ∈ Z 23/26

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend