lecture 5 hierarchical control theoretical and numerical
play

Lecture 5: Hierarchical control: theoretical and numerical results - PowerPoint PPT Presentation

Lecture 5: Hierarchical control: theoretical and numerical results Enrique FERNNDEZ-CARA Dpto. E.D.A.N. - Univ. of Sevilla Hierarchical control: why and what for Nash and Pareto equilibria Stackelberg strategies Numerics E. Fernndez-Cara


  1. Lecture 5: Hierarchical control: theoretical and numerical results Enrique FERNÁNDEZ-CARA Dpto. E.D.A.N. - Univ. of Sevilla Hierarchical control: why and what for Nash and Pareto equilibria Stackelberg strategies Numerics E. Fernández-Cara Hierarchical control

  2. Outline Background 1 The Stackelberg-Nash strategy The main result Numerical analysis and results 2 Computation of Nash equilibria Computation of Pareto equilibria Numerical solution of the Stackelberg-Nash null control problem Additional results and comments 3 E. Fernández-Cara Hierarchical control

  3. Control issues The meaning of control CONTROL PROBLEMS What is usual: act to get good (or the best) results for � E ( y ) = F ( v ) + . . . What is easier? Solving? Controlling? Two classical approaches: Optimal control Controllability Question: How can we follow both viewpoints together? E. Fernández-Cara Hierarchical control

  4. Background Both viewpoints Example: Optimal-control / controllability problem A simplified model for the autonomous car driving problem The system: x ( 0 ) = x 0 x t = f ( x , u ) , Constraints: dist. ( x ( t ) , Z ( t )) ≥ ε ∀ t u ∈ U ad ( | u ( t ) | ≤ C ) u determines direction and speed Goals (prescribed x T and ˆ x ): x ( T ) = x T (or | x ( T ) − x T | ≤ ε . . . ) Minimize sup t | x ( t ) − ˆ x ( t ) | [Sontag, Sussman-Tang, . . . ] E. Fernández-Cara Hierarchical control

  5. Optimal control + controllability Automatic driving Figure: The ICARE Project, INRIA, France. Autonomous car driving. Malis-Morin-Rives-Samson, 2004 The car in the street E. Fernández-Cara Hierarchical control

  6. Optimal control + controllability Automatic driving Figure: Nissan ID. Autonomous car driving. 2015–2020 What was announced in 2014: • Nissan ID 1.0 (2015), highways and traffic jams (no lane change) - OK • ID 2.0 (2018), overtaking and lane change • ID 3.0 (2020), complete autonomous driving in town http://reports.nissan-global.com/EN/?p=17295 E. Fernández-Cara Hierarchical control

  7. Hierarchical control The system and the controls. Meaning Another way to connect optimal control and controllability: HIERARCHICAL CONTROL (Stackelberg-Nash, Stackelberg-Pareto, . . . ) The main ideas in the context of Navier-Stokes: Three controls: one leader, two followers y t +( y · ∇ ) y − ∆ y + ∇ p = f 1 O + v 1 1 O 1 + v 2 1 O 2 , ( x , t ) ∈ Ω × ( 0 , T )   ∇ · y = 0 , ( x , t ) ∈ Ω × ( 0 , T )   y = 0 , ( x , t ) ∈ ∂ Ω × ( 0 , T )  y ( x , 0 ) = y 0 ( x ) ,  x ∈ Ω  Disjoint domains O , O i , ( i = 1 , 2 ) Three objectives: “Simultaneously”, y ≈ y i , d in Ω × ( 0 , T ) , i = 1 , 2, reasonable effort: �� �� | y − y i , d | 2 + µ | v i | 2 , Minimize α i i = 1 , 2 Ω × ( 0 , T ) O i × ( 0 , T ) Bi-objective optimal control - The task of the followers Get y ( x , T ) ≡ 0 Null controllability - The task of the leader E. Fernández-Cara Hierarchical control

  8. Hierarchical control The system and the controls. Meaning y t +( y · ∇ ) y − ∆ y + ∇ p = f 1 O + v 1 1 O 1 + v 2 1 O 2 , ( x , t ) ∈ Ω × ( 0 , T )   ∇ · y = 0 , ( x , t ) ∈ Ω × ( 0 , T )   y = 0 , ( x , t ) ∈ ∂ Ω × ( 0 , T )  y ( x , 0 ) = y 0 ( x ) ,  x ∈ Ω  Many applications: Heating: Controlling temperatures Heat sources at different locations - Heat PDE (linear, semilinear, etc.) Tumor growth: Controlling tumor cell densities Radiotherapy strategies - Reaction-diffusion PDEs bilinear control Fluid mechanics: Controlling fluid velocity fields Several mechanical actions - Stokes, Navier-Stokes or similar Finances: Controlling the price of an option Agents at different stock prices, etc. - Backwards in time heat-like PDE Degenerate coefficients Contributions: Lions, Díaz-Lions, Glowinski-Periaux-Ramos, Guillén, . . . Optimal control + AC E. Fernández-Cara Hierarchical control

  9. Hierarchical control The system and the controls. Meaning A SIMPLIFIED PROBLEM FOR THE 1D HEAT PDE Again three controls: one leader, two followers y t − y xx = f 1 O + v 1 1 O 1 + v 2 1 O 2 , ( x , t ) ∈ ( 0 , 1 ) × ( 0 , T )   y ( 0 , t ) = y ( 1 , t ) = 0 , t ∈ ( 0 , T ) ( H ) y ( x , 0 ) = y 0 ( x ) , x ∈ ( 0 , 1 )  Different intervals O , O i Again three objectives: Simultaneously, y ≈ y i , d in Ω × ( 0 , T ) , i = 1 , 2, reasonable effort: �� �� | y − y i , d | 2 + µ | v i | 2 , Minimize α i i = 1 , 2 Ω × ( 0 , T ) O i × ( 0 , T ) Bi-objective optimal control - Followers’ task In practice, does an equilibrium ( v 1 ( f ) , v 2 ( f )) exist for each f ? Get y ( T ) = 0 Null controllability - Leader’s task Can we find f such that y ( T ) = 0? What can we do? E. Fernández-Cara Hierarchical control

  10. Hierarchical control The Stackelberg-Nash strategy THE STACKELBERG-NASH STRATEGY Step 1: f is fixed �� �� | y − y i , d | 2 + µ | v i | 2 , i = 1 , 2 J i ( v 1 , v 2 ) := α i Ω × ( 0 , T ) O i × ( 0 , T ) Find a Nash equilibrium ( v 1 ( f ) , v 2 ( f )) with v i ( f ) ∈ L 2 ( O i × ( 0 , T )) : ∀ v 1 ∈ L 2 ( O 1 × ( 0 , T )) J 1 ( v 1 ( f ) , v 2 ( f )) ≤ J 1 ( v 1 , v 2 ( f )) ∀ v 2 ∈ L 2 ( O 2 × ( 0 , T )) J 2 ( v 1 ( f ) , v 2 ( f )) ≤ J 2 ( v 1 ( f ) , v 2 ) Equivalent to an optimality system: y t − y xx = f 1 O − 1 µ φ 1 1 O 1 − 1 µ φ 2 1 O 2     i = 1 , 2 − φ i , t − φ i , xx = α i ( y − y i , d ) ,  φ i ( 0 , t ) = φ i ( 1 , t ) = 0 , y ( 0 , t ) = y ( 1 , t ) = 0 , t ∈ ( 0 , T )    y ( x , 0 ) = y 0 ( x ) , φ i ( x , T ) = 0 , x ∈ ( 0 , 1 )  v i ( f ) = − 1 µ φ i | O i × ( 0 , T ) ∃ ( v 1 ( f ) , v 2 ( f )) ? Uniqueness? E. Fernández-Cara Hierarchical control

  11. Hierarchical control The Stackelberg-Nash strategy THE STACKELBERG-NASH STRATEGY Step 2: Find f such that y t − y xx = f 1 O − 1 µ φ 1 1 O 1 − 1 µ φ 2 1 O 2   i = 1 , 2 ( HSN ) 1 − φ i , t − φ i , xx = α i ( y − y i , d ) , y | t = 0 = y 0 ( x ) , φ i | t = T = 0 , etc.  y ( x , T ) = 0 , x ∈ ( 0 , 1 ) ( HSN ) 2 with � f � L 2 ( O× ( 0 , T )) ≤ C � y 0 � L 2 Equivalent to 2 �� �� � ψ | t = 0 � 2 + ρ − 2 | γ i | 2 dx dt ≤ C | ψ | 2 dx dt � ˆ Ω × ( 0 , T ) O× ( 0 , T ) i = 1 for all ψ T , with � − ψ t − ψ xx = � 2 xx = − 1 µ ψ 1 O i i = 1 α i γ i , γ i t − γ i ψ | t = T = ψ T ( x ) , γ i | t = 0 = 0 , etc. True? E. Fernández-Cara Hierarchical control

  12. Hierarchical control The result Theorem Assume: large µ ρ 2 | y i , d | 2 dx dt < + ∞ , i = 1 , 2 , then: ρ such that, if � � ∃ ˆ Ω × ( 0 , T ) ˆ ∀ y 0 ∈ L 2 (Ω) ∃ null controls f ∈ L 2 ( O × ( 0 , T )) & Nash pairs ( v 1 ( f ) , v 2 ( f )) Idea of the proof: Energy estimates for the optimality system for ( y , φ 1 , φ 2 ) Energy and Carleman estimates for the adjoint system for ( ψ, γ 1 , γ 2 ) We do need: µ is large E. Fernández-Cara Hierarchical control

  13. Numerical analysis and results Computation of Nash equilibria FIRST, HOW CAN WE COMPUTE A NASH EQUILIBRIUM PAIR? (THE FOLLOWERS) The goal: f is given. Solve the optimality system y t − ∆ y = f 1 O − 1 µ φ 1 1 O 1 − 1 µ φ 2 1 O 2   i = 1 , 2 − φ i , t − φ i , xx = α i ( y − y i , d ) , y | t = 0 = y 0 ( x ) , φ i | t = T = 0 , etc.  Then take v i = 1 � µ φ i � O i × ( 0 , T ) For instance: ALG 1 - Fixed point ALG 1: ( v 1 , v 2 ) → y → ( φ 1 , φ 2 ) → ( v 1 , v 2 ) Also: Gradient, Conjugate gradient, etc. Standard approximations: P ℓ -Lagrange FEM’s, Implicit Euler schemes E. Fernández-Cara Hierarchical control

  14. Numerical analysis and results Computation of Nash equilibria A 2D numerical experiment with FreeFem++: http://www.freefem.org/ Figure: The final adapted mesh - Number of vertices: 1460 - Number of triangles: 2781 E. Fernández-Cara Hierarchical control

  15. Numerical analysis and results Computation of Nash equilibria Figure: The (fixed) leader control f (constant in time) E. Fernández-Cara Hierarchical control

  16. Numerical analysis and results Computation of Nash equilibria Figure: The target y 1 , d (constant in time) E. Fernández-Cara Hierarchical control

  17. Numerical analysis and results Computation of Nash equilibria Figure: The target y 2 , d (constant in time) E. Fernández-Cara Hierarchical control

  18. Numerical analysis and results Computation of Nash equilibria Figure: The state y at t = T - Result for y 0 = 0, µ = 0 . 15 i � v i , n + 1 − v i , n � / � v i , n + 1 � ≤ 10 − 5 Stopping test: � E. Fernández-Cara Hierarchical control

  19. Numerical analysis and results Computation of Nash equilibria Figure: The adjoint state φ 1 at t = 0 E. Fernández-Cara Hierarchical control

  20. Numerical analysis and results Computation of Nash equilibria Figure: The adjoint state φ 2 at t = 0 E. Fernández-Cara Hierarchical control

  21. Numerical analysis and results Computation of Nash equilibria Iterates versus µ : Figure: The number of iterates as a function of µ i � v i , n + 1 − v i , n � / � v i , n + 1 � ≤ 10 − 5 Stopping test: � E. Fernández-Cara Hierarchical control

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend