reflector antenna problem
play

Reflector antenna problem Boris Thibert LJK Universit e de - PowerPoint PPT Presentation

Reflector antenna problem Boris Thibert LJK Universit e de Grenoble Joint work with Quentin M erigot and Pedro Machado Modelisation with optimal transport October 3-4, 2013 1 Far-Field Reflector Antenna Problem Punctual light at origin


  1. Semi-discrete optimal transport Aurenhammer, Hoffman, Aronov ’98 Merigot ’2010 µ = probability measure on X ν = prob. measure on finite Y = � with density, X = manifold y ∈ Y ν y δ y T − 1 ( y ) y Transport map: T : X → Y s.t. Cost function: c : X × Y → R ∀ y ∈ Y, µ ( T − 1 ( { y } )) = ν y � C c ( T ) = X c ( x, T ( x )) d µ ( x ) � = � T − 1 ( y ) c ( x, y ) d µ ( x ) in short: T # µ = ν . y Monge problem: T c ( µ, ν ) := min {C c ( T ); T # µ = ν } 5

  2. Weighted Voronoi and Optimal Transport We assume (Twist) , i.e. c ∈ C ∞ and ∀ x ∈ X the map y ∈ Y �→ ∇ x c ( x, y ) is injective. y Y finite set, ψ : Y → R 6

  3. Weighted Voronoi and Optimal Transport We assume (Twist) , i.e. c ∈ C ∞ and ∀ x ∈ X the map y ∈ Y �→ ∇ x c ( x, y ) is injective. y T ψ c ( x ) = arg min y ∈ Y c ( x, y ) + ψ ( y ) Y finite set, ψ : Y → R 6

  4. Weighted Voronoi and Optimal Transport We assume (Twist) , i.e. c ∈ C ∞ and ∀ x ∈ X the map y ∈ Y �→ ∇ x c ( x, y ) is injective. y T ψ c ( x ) = arg min y ∈ Y c ( x, y ) + ψ ( y ) Vor ψ c ( y ) = { x ∈ R d ; T ψ c ( x ) = y } Y finite set, ψ : Y → R = generalized weighted Voronoi cell 6

  5. Weighted Voronoi and Optimal Transport We assume (Twist) , i.e. c ∈ C ∞ and ∀ x ∈ X the map y ∈ Y �→ ∇ x c ( x, y ) is injective. y T ψ c ( x ) = arg min y ∈ Y c ( x, y ) + ψ ( y ) Vor ψ c ( y ) = { x ∈ R d ; T ψ c ( x ) = y } Y finite set, ψ : Y → R = generalized weighted Voronoi cell NB: Under (Twist) , (Vor ψ c ( y )) y ∈ Y partitions X and T ψ c well-defined a.e. 6

  6. Weighted Voronoi and Optimal Transport We assume (Twist) , i.e. c ∈ C ∞ and ∀ x ∈ X the map y ∈ Y �→ ∇ x c ( x, y ) is injective. y T ψ c ( x ) = arg min y ∈ Y c ( x, y ) + ψ ( y ) Vor ψ c ( y ) = { x ∈ R d ; T ψ c ( x ) = y } Y finite set, ψ : Y → R = generalized weighted Voronoi cell NB: Under (Twist) , (Vor ψ c ( y )) y ∈ Y partitions X and T ψ c well-defined a.e. Lemma: Given a measure µ with density and ψ : Y → R , c is a c -optimal transport between µ and T ψ the map T ψ c # µ . 6

  7. Weighted Voronoi and Optimal Transport We assume (Twist) , i.e. c ∈ C ∞ and ∀ x ∈ X the map y ∈ Y �→ ∇ x c ( x, y ) is injective. y T ψ c ( x ) = arg min y ∈ Y c ( x, y ) + ψ ( y ) Vor ψ c ( y ) = { x ∈ R d ; T ψ c ( x ) = y } Y finite set, ψ : Y → R = generalized weighted Voronoi cell NB: Under (Twist) , (Vor ψ c ( y )) y ∈ Y partitions X and T ψ c well-defined a.e. Lemma: Given a measure µ with density and ψ : Y → R , c is a c -optimal transport between µ and T ψ the map T ψ c # µ . ◮ Note: T ψ y ∈ Y µ (Vor ψ c # µ = � c ( y )) δ y . 6

  8. Weighted Voronoi and Optimal Transport We assume (Twist) , i.e. c ∈ C ∞ and ∀ x ∈ X the map y ∈ Y �→ ∇ x c ( x, y ) is injective. y T ψ c ( x ) = arg min y ∈ Y c ( x, y ) + ψ ( y ) Vor ψ c ( y ) = { x ∈ R d ; T ψ c ( x ) = y } Y finite set, ψ : Y → R = generalized weighted Voronoi cell NB: Under (Twist) , (Vor ψ c ( y )) y ∈ Y partitions X and T ψ c well-defined a.e. Lemma: Given a measure µ with density and ψ : Y → R , c is a c -optimal transport between µ and T ψ the map T ψ c # µ . ◮ Note: T ψ y ∈ Y µ (Vor ψ c # µ = � c ( y )) δ y . ◮ Converse ? 6

  9. Back to the Reflector Antenna Problem Lemma: With c ( x, y ) = − log(1 − � x | y � ) , and ψ i := log( κ i ) , κ ) = { x ∈ S 2 PI i ( � 0 , c ( x, y i ) + ψ i ≤ c ( x, y j ) + ψ j ∀ j } . y 1 P 3 µ PI 3 ( � κ ) y 2 o P 2 o P 1 y 3 7

  10. Back to the Reflector Antenna Problem Lemma: With c ( x, y ) = − log(1 − � x | y � ) , and ψ i := log( κ i ) , κ ) = { x ∈ S 2 PI i ( � 0 , c ( x, y i ) + ψ i ≤ c ( x, y j ) + ψ j ∀ j } . y 1 P 3 Optimal transport formulation κ ) = Vor ψ ◮ PI i ( � c ( y i ) . µ PI 3 ( � κ ) y 2 ◮ T ψ c ( x ) = arg min y ∈ Y c ( x, y ) + ψ ( y ) o P 2 o P 1 y 3 7

  11. Back to the Reflector Antenna Problem Lemma: With c ( x, y ) = − log(1 − � x | y � ) , and ψ i := log( κ i ) , κ ) = { x ∈ S 2 PI i ( � 0 , c ( x, y i ) + ψ i ≤ c ( x, y j ) + ψ j ∀ j } . y 1 P 3 Optimal transport formulation κ ) = Vor ψ ◮ PI i ( � c ( y i ) . µ PI 3 ( � κ ) y 2 ◮ T ψ c ( x ) = arg min y ∈ Y c ( x, y ) + ψ ( y ) o P 2 o P 1 y 3 c is a c -optimal transport between µ and T ψ The map T ψ c # µ . 7

  12. Back to the Reflector Antenna Problem Lemma: With c ( x, y ) = − log(1 − � x | y � ) , and ψ i := log( κ i ) , κ ) = { x ∈ S 2 PI i ( � 0 , c ( x, y i ) + ψ i ≤ c ( x, y j ) + ψ j ∀ j } . y 1 P 3 Optimal transport formulation κ ) = Vor ψ ◮ PI i ( � c ( y i ) . µ PI 3 ( � κ ) y 2 ◮ T ψ c ( x ) = arg min y ∈ Y c ( x, y ) + ψ ( y ) o P 2 o P 1 y 3 c is a c -optimal transport between µ and T ψ The map T ψ c # µ . Problem (FF): Find ψ 1 , . . . , ψ N such that T ψ c # µ = ν . 7

  13. Supporting paraboloids algorithm’ 99 Cafarelli-Kochengin-Oliker’99: coordinate-wise ascent, with minimum increment 8

  14. Supporting paraboloids algorithm’ 99 Cafarelli-Kochengin-Oliker’99: coordinate-wise ascent, with minimum increment Initialization: Fix y 0 ∈ Y , let δ = ε/N and compute ψ s.t. µ (Vor ψ ∀ y ∈ Y \ { y 0 } , c ( p )) ≤ ν y + δ While ∃ y � = y 0 such that µ (Vor ψ c ( y )) ≤ ν y − δ , do: decrease ψ ( y ) s.t. µ (Vor ψ c ( y )) ∈ [ ν y , ν y + δ ] , Result: ψ s.t. for all y , | µ (Vor ψ c ( y )) − ν y | ≤ ε . 8

  15. Supporting paraboloids algorithm’ 99 Cafarelli-Kochengin-Oliker’99: coordinate-wise ascent, with minimum increment Initialization: Fix y 0 ∈ Y , let δ = ε/N and compute ψ s.t. µ (Vor ψ ∀ y ∈ Y \ { y 0 } , c ( p )) ≤ ν y + δ While ∃ y � = y 0 such that µ (Vor ψ c ( y )) ≤ ν y − δ , do: decrease ψ ( y ) s.t. µ (Vor ψ c ( y )) ∈ [ ν y , ν y + δ ] , Result: ψ s.t. for all y , | µ (Vor ψ c ( y )) − ν y | ≤ ε . 8

  16. Supporting paraboloids algorithm’ 99 Cafarelli-Kochengin-Oliker’99: coordinate-wise ascent, with minimum increment Initialization: Fix y 0 ∈ Y , let δ = ε/N and compute ψ s.t. µ (Vor ψ ∀ y ∈ Y \ { y 0 } , c ( p )) ≤ ν y + δ While ∃ y � = y 0 such that µ (Vor ψ c ( y )) ≤ ν y − δ , do: decrease ψ ( y ) s.t. µ (Vor ψ c ( y )) ∈ [ ν y , ν y + δ ] , Result: ψ s.t. for all y , | µ (Vor ψ c ( y )) − ν y | ≤ ε . ◮ Complexity of SP: N 2 /ε steps 8

  17. Supporting paraboloids algorithm’ 99 Cafarelli-Kochengin-Oliker’99: coordinate-wise ascent, with minimum increment Initialization: Fix y 0 ∈ Y , let δ = ε/N and compute ψ s.t. µ (Vor ψ ∀ y ∈ Y \ { y 0 } , c ( p )) ≤ ν y + δ While ∃ y � = y 0 such that µ (Vor ψ c ( y )) ≤ ν y − δ , do: decrease ψ ( y ) s.t. µ (Vor ψ c ( y )) ∈ [ ν y , ν y + δ ] , Result: ψ s.t. for all y , | µ (Vor ψ c ( y )) − ν y | ≤ ε . ◮ Complexity of SP: N 2 /ε steps ◮ Generalization of Oliker–Prussner in R 2 with c ( x, y ) = � x − y � 2 8

  18. Supporting paraboloids algorithm’ 99 Cafarelli-Kochengin-Oliker’99: coordinate-wise ascent, with minimum increment Initialization: Fix y 0 ∈ Y , let δ = ε/N and compute ψ s.t. µ (Vor ψ ∀ y ∈ Y \ { y 0 } , c ( p )) ≤ ν y + δ While ∃ y � = y 0 such that µ (Vor ψ c ( y )) ≤ ν y − δ , do: decrease ψ ( y ) s.t. µ (Vor ψ c ( y )) ∈ [ ν y , ν y + δ ] , Result: ψ s.t. for all y , | µ (Vor ψ c ( y )) − ν y | ≤ ε . ◮ Complexity of SP: N 2 /ε steps ◮ Generalization of Oliker–Prussner in R 2 with c ( x, y ) = � x − y � 2 ◮ Generalization: MTW + costs Kitagawa ’12 8

  19. Concave maximization κ solves (FF) iff � Theorem: � ψ = log( � κ ) maximizes � Φ( ψ ) := � c ( y i ) [ c ( x, y i ) + ψ i ] d µ ( x ) − � i ψ i ν i Vor ψ i with c ( x, y ) = − log(1 − � x | y � ) . Aurenhammer, Hoffman, Aronov ’98 9

  20. Concave maximization κ solves (FF) iff � Theorem: � ψ = log( � κ ) maximizes � Φ( ψ ) := � c ( y i ) [ c ( x, y i ) + ψ i ] d µ ( x ) − � i ψ i ν i Vor ψ i with c ( x, y ) = − log(1 − � x | y � ) . Aurenhammer, Hoffman, Aronov ’98 ◮ A consequence of Kantorovich duality. 9

  21. Proof of concave maximization thm 10

  22. Proof of concave maximization thm Supdifferentials. Let Φ : R d → R and λ ∈ R d . ◮ ∂ + Φ( λ ) = { v ∈ R d , ∀ µ ∈ R d } . Φ( µ ) ≤ Φ( λ ) + � µ − λ | v � 10

  23. Proof of concave maximization thm Supdifferentials. Let Φ : R d → R and λ ∈ R d . ◮ ∂ + Φ( λ ) = { v ∈ R d , ∀ µ ∈ R d } . Φ( µ ) ≤ Φ( λ ) + � µ − λ | v � ◮ Φ concave ⇔ ∀ λ ∈ R d ∂ + Φ( λ ) � = ∅ . ◮ In this case : ∂ + Φ( λ ) = {∇ Φ( λ ) } a.e. ◮ λ maximum of Φ ⇔ 0 ∈ ∂ + Φ( λ ) 10

  24. Proof of concave maximization thm � Φ( ψ ) := � c ( y i ) [ c ( x, y i ) + ψ i ] d µ ( x ) − � i ψ i ν i Vor ψ i 10

  25. Proof of concave maximization thm � Φ( ψ ) := � c ( y i ) [ c ( x, y i ) + ψ i ] d µ ( x ) − � i ψ i ν i Vor ψ i � S d − 1 min 1 ≤ i ≤ N [ c ( x, y i ) + ψ i ] d µ ( x ) − � = i ψ i ν i 10

  26. Proof of concave maximization thm � Φ( ψ ) := � c ( y i ) [ c ( x, y i ) + ψ i ] d µ ( x ) − � i ψ i ν i Vor ψ i � S d − 1 min 1 ≤ i ≤ N [ c ( x, y i ) + ψ i ] d µ ( x ) − � = i ψ i ν i For all ϕ ∈ R d min 1 ≤ i ≤ N [ c ( x, y i ) + ϕ i ] ≤ [ c ( x, y T ψ ( x ) ) + ϕ T ψ ( x ) ] 10

  27. Proof of concave maximization thm � Φ( ψ ) := � c ( y i ) [ c ( x, y i ) + ψ i ] d µ ( x ) − � i ψ i ν i Vor ψ i � S d − 1 min 1 ≤ i ≤ N [ c ( x, y i ) + ψ i ] d µ ( x ) − � = i ψ i ν i T ψ ( x ) = i ⇔ x ∈ Vor ψ c ( y i ) For all ϕ ∈ R d min 1 ≤ i ≤ N [ c ( x, y i ) + ϕ i ] ≤ [ c ( x, y T ψ ( x ) ) + ϕ T ψ ( x ) ] 10

  28. Proof of concave maximization thm � Φ( ψ ) := � c ( y i ) [ c ( x, y i ) + ψ i ] d µ ( x ) − � i ψ i ν i Vor ψ i � S d − 1 min 1 ≤ i ≤ N [ c ( x, y i ) + ψ i ] d µ ( x ) − � = i ψ i ν i T ψ ( x ) = i ⇔ x ∈ Vor ψ c ( y i ) For all ϕ ∈ R d min 1 ≤ i ≤ N [ c ( x, y i ) + ϕ i ] ≤ [ c ( x, y T ψ ( x ) ) + ϕ T ψ ( x ) ] ≤ [ c ( x, y T ψ ( x ) ) + ψ T ψ ( x ) ] + ϕ T ψ ( x ) − ψ T ψ ( x ) 10

  29. Proof of concave maximization thm � Φ( ψ ) := � c ( y i ) [ c ( x, y i ) + ψ i ] d µ ( x ) − � i ψ i ν i Vor ψ i � S d − 1 min 1 ≤ i ≤ N [ c ( x, y i ) + ψ i ] d µ ( x ) − � = i ψ i ν i T ψ ( x ) = i ⇔ x ∈ Vor ψ c ( y i ) For all ϕ ∈ R d min 1 ≤ i ≤ N [ c ( x, y i ) + ϕ i ] ≤ [ c ( x, y T ψ ( x ) ) + ϕ T ψ ( x ) ] ≤ [ c ( x, y T ψ ( x ) ) + ψ T ψ ( x ) ] + ϕ T ψ ( x ) − ψ T ψ ( x ) � S d − 1 Φ( ϕ ) + � i ϕ i ν i Φ( ψ ) + � i ψ i ν i � S d − 1 ϕ T ψ ( x ) − ψ T ψ ( x ) d µ ( x ) 10

  30. Proof of concave maximization thm � Φ( ψ ) := � c ( y i ) [ c ( x, y i ) + ψ i ] d µ ( x ) − � i ψ i ν i Vor ψ i � S d − 1 min 1 ≤ i ≤ N [ c ( x, y i ) + ψ i ] d µ ( x ) − � = i ψ i ν i T ψ ( x ) = i ⇔ x ∈ Vor ψ c ( y i ) � S d − 1 ϕ T ψ ( x ) − ψ T ψ ( x ) d µ ( x ) − � Φ( ψ ) − Φ( ϕ ) ≤ i ( ϕ i − ψ i ) ν i 10

  31. Proof of concave maximization thm � Φ( ψ ) := � c ( y i ) [ c ( x, y i ) + ψ i ] d µ ( x ) − � i ψ i ν i Vor ψ i � S d − 1 min 1 ≤ i ≤ N [ c ( x, y i ) + ψ i ] d µ ( x ) − � = i ψ i ν i T ψ ( x ) = i ⇔ x ∈ Vor ψ c ( y i ) � S d − 1 ϕ T ψ ( x ) − ψ T ψ ( x ) d µ ( x ) − � Φ( ψ ) − Φ( ϕ ) ≤ i ( ϕ i − ψ i ) ν i �� � � ≤ d µ ( x ) − ν i ( ϕ i − ψ i ) Vor ψ c ( y i ) 1 ≤ i ≤ N 10

  32. Proof of concave maximization thm � Φ( ψ ) := � c ( y i ) [ c ( x, y i ) + ψ i ] d µ ( x ) − � i ψ i ν i Vor ψ i � S d − 1 min 1 ≤ i ≤ N [ c ( x, y i ) + ψ i ] d µ ( x ) − � = i ψ i ν i T ψ ( x ) = i ⇔ x ∈ Vor ψ c ( y i ) � S d − 1 ϕ T ψ ( x ) − ψ T ψ ( x ) d µ ( x ) − � Φ( ψ ) − Φ( ϕ ) ≤ i ( ϕ i − ψ i ) ν i �� � � ≤ d µ ( x ) − ν i ( ϕ i − ψ i ) Vor ψ c ( y i ) 1 ≤ i ≤ N = � D Φ( ψ ) | ϕ − ψ � � � µ (Vor ψ with D Φ( ψ ) = c ( y i )) − ν i 10

  33. Proof of concave maximization thm � Φ( ψ ) := � c ( y i ) [ c ( x, y i ) + ψ i ] d µ ( x ) − � i ψ i ν i Vor ψ i � S d − 1 min 1 ≤ i ≤ N [ c ( x, y i ) + ψ i ] d µ ( x ) − � = i ψ i ν i T ψ ( x ) = i ⇔ x ∈ Vor ψ c ( y i ) � S d − 1 ϕ T ψ ( x ) − ψ T ψ ( x ) d µ ( x ) − � Φ( ψ ) − Φ( ϕ ) ≤ i ( ϕ i − ψ i ) ν i �� � � ≤ d µ ( x ) − ν i ( ϕ i − ψ i ) Vor ψ c ( y i ) 1 ≤ i ≤ N = � D Φ( ψ ) | ϕ − ψ � � � µ (Vor ψ with D Φ( ψ ) = c ( y i )) − ν i ◮ D Φ( ψ ) ∈ ∂ + Φ( λ ) ⇒ Φ concave. ◮ D Φ( ψ ) depends continuously on ψ ⇒ Φ of class C 1 . ◮ ψ maximum of Φ ⇔ µ (Vor ψ c ( y i )) = ν i ∀ i 10

  34. 2. Implementation 11

  35. Implementation of Convex Programming ( − Φ ) ◮ Quasi-Newton scheme: Computation of descent direction / time step LBFGS: low-storage version of the BFGS quasi-Newton scheme 12

  36. Implementation of Convex Programming ( − Φ ) ◮ Quasi-Newton scheme: Computation of descent direction / time step LBFGS: low-storage version of the BFGS quasi-Newton scheme � c ( p ) d µ ( x ) Vor ψ ◮ Evaluation of Φ and ∇ Φ : � c ( y ) c ( x, y ) d µ ( x ) Vor ψ Main difficulty: computation of Vor ψ c ( y ) 12

  37. Implementation of Convex Programming ( − Φ ) ◮ Quasi-Newton scheme: Computation of descent direction / time step LBFGS: low-storage version of the BFGS quasi-Newton scheme � c ( p ) d µ ( x ) Vor ψ ◮ Evaluation of Φ and ∇ Φ : � c ( y ) c ( x, y ) d µ ( x ) Vor ψ Main difficulty: computation of Vor ψ c ( y ) 12

  38. Computation of the generalized Voronoi cells Definition: Given P = { p i } 1 ≤ i ≤ N ⊆ R d and ( ω i ) 1 ≤ i ≤ N ∈ R N P ( p i ) := { x ∈ R d ; i = arg min j � x − p j � 2 + ω j } Pow ω 13

  39. Computation of the generalized Voronoi cells Definition: Given P = { p i } 1 ≤ i ≤ N ⊆ R d and ( ω i ) 1 ≤ i ≤ N ∈ R N P ( p i ) := { x ∈ R d ; i = arg min j � x − p j � 2 + ω j } Pow ω ◮ Efficient computation of (Pow ω P ( p i )) i using CGAL ( d = 2 , 3 ) 13

  40. Computation of the generalized Voronoi cells Definition: Given P = { p i } 1 ≤ i ≤ N ⊆ R d and ( ω i ) 1 ≤ i ≤ N ∈ R N P ( p i ) := { x ∈ R d ; i = arg min j � x − p j � 2 + ω j } Pow ω ◮ Efficient computation of (Pow ω P ( p i )) i using CGAL ( d = 2 , 3 ) 2 κ j � 2 − Lemma: With � κ ) , p i := − y j 2 κ j and ω i := −� y j 1 ψ = log( � κ j , Vor ψ c ( y i ) = Pow ω P ( p i ) ∩ S 2 13

  41. Computation of the generalized Voronoi cells Definition: Given P = { p i } 1 ≤ i ≤ N ⊆ R d and ( ω i ) 1 ≤ i ≤ N ∈ R N P ( p i ) := { x ∈ R d ; i = arg min j � x − p j � 2 + ω j } Pow ω ◮ Efficient computation of (Pow ω P ( p i )) i using CGAL ( d = 2 , 3 ) 2 κ j � 2 − Lemma: With � κ ) , p i := − y j 2 κ j and ω i := −� y j 1 ψ = log( � κ j , Vor ψ c ( y i ) = Pow ω P ( p i ) ∩ S 2 Proof: x ∈ Vor ψ c ( y i ) ⊆ S 2 o κ j ⇐ ⇒ i ∈ arg min j 1 −� x | y j � 13

  42. Computation of the generalized Voronoi cells Definition: Given P = { p i } 1 ≤ i ≤ N ⊆ R d and ( ω i ) 1 ≤ i ≤ N ∈ R N P ( p i ) := { x ∈ R d ; i = arg min j � x − p j � 2 + ω j } Pow ω ◮ Efficient computation of (Pow ω P ( p i )) i using CGAL ( d = 2 , 3 ) 2 κ j � 2 − Lemma: With � κ ) , p i := − y j 2 κ j and ω i := −� y j 1 ψ = log( � κ j , Vor ψ c ( y i ) = Pow ω P ( p i ) ∩ S 2 Proof: x ∈ Vor ψ c ( y i ) ⊆ S 2 o κ j ⇐ ⇒ i ∈ arg min j 1 −� x | y j � ⇒ i ∈ arg min j � x | y j 1 ⇐ κ j � − κ j 13

  43. Computation of the generalized Voronoi cells Definition: Given P = { p i } 1 ≤ i ≤ N ⊆ R d and ( ω i ) 1 ≤ i ≤ N ∈ R N P ( p i ) := { x ∈ R d ; i = arg min j � x − p j � 2 + ω j } Pow ω ◮ Efficient computation of (Pow ω P ( p i )) i using CGAL ( d = 2 , 3 ) 2 κ j � 2 − Lemma: With � κ ) , p i := − y j 2 κ j and ω i := −� y j 1 ψ = log( � κ j , Vor ψ c ( y i ) = Pow ω P ( p i ) ∩ S 2 Proof: x ∈ Vor ψ c ( y i ) ⊆ S 2 o κ j ⇐ ⇒ i ∈ arg min j 1 −� x | y j � ⇒ i ∈ arg min j � x | y j 1 ⇐ κ j � − κ j 2 κ j � 2 − � y j 2 κ j � 2 − y j 1 ⇐ ⇒ i ∈ arg min j � x + κ j − p j ω j 13

  44. Computation of the generalized Voronoi cells Definition: Given P = { p i } 1 ≤ i ≤ N ⊆ R d and ( ω i ) 1 ≤ i ≤ N ∈ R N P ( p i ) := { x ∈ R d ; i = arg min j � x − p j � 2 + ω j } Pow ω ◮ Efficient computation of (Pow ω P ( p i )) i using CGAL ( d = 2 , 3 ) 2 κ j � 2 − Lemma: With � κ ) , p i := − y j 2 κ j and ω i := −� y j 1 ψ = log( � κ j , Vor ψ c ( y i ) = Pow ω P ( p i ) ∩ S 2 Proof: x ∈ Vor ψ c ( y i ) ⊆ S 2 o κ j ⇐ ⇒ i ∈ arg min j 1 −� x | y j � ⇒ i ∈ arg min j � x | y j 1 ⇐ κ j � − κ j 2 κ j � 2 − � y j 2 κ j � 2 − y j 1 ⇐ ⇒ i ∈ arg min j � x + κ j − p j ω j ⇒ x ∈ Pow ω P ( p i ) ∩ S 2 ⇐ 13

  45. Computation of the generalized Voronoi cells P ( p i ) ∩ S 2 can ◮ in general, the cells C i := Pow ω be disconnected, have holes, etc. 14

  46. Computation of the generalized Voronoi cells P ( p i ) ∩ S 2 can ◮ in general, the cells C i := Pow ω be disconnected, have holes, etc. ◮ boundary representation: a family of oriented cycles composed of circular arcs per cell. 14

  47. Computation of the generalized Voronoi cells P ( p i ) ∩ S 2 can ◮ in general, the cells C i := Pow ω be disconnected, have holes, etc. ◮ boundary representation: a family of oriented cycles composed of circular arcs per cell. ◮ lower complexity bound: Ω( N log N ) . 14

  48. Computation of the generalized Voronoi cells P ( p i ) ∩ S 2 can ◮ in general, the cells C i := Pow ω be disconnected, have holes, etc. ◮ boundary representation: a family of oriented cycles composed of circular arcs per cell. ◮ lower complexity bound: Ω( N log N ) . Algorithm: for each cell C i = Pow ω P ( p i ) ∩ S 2 14

  49. Computation of the generalized Voronoi cells P ( p i ) ∩ S 2 can ◮ in general, the cells C i := Pow ω be disconnected, have holes, etc. ◮ boundary representation: a family of oriented cycles composed of circular arcs per cell. ◮ lower complexity bound: Ω( N log N ) . Algorithm: for each cell C i = Pow ω P ( p i ) ∩ S 2 1. Compute implicitely the intersection between every edge of C i and S 2 . Set vertices V := { } . 14

  50. Computation of the generalized Voronoi cells P ( p i ) ∩ S 2 can ◮ in general, the cells C i := Pow ω be disconnected, have holes, etc. ◮ boundary representation: a family of oriented cycles composed of circular arcs per cell. ◮ lower complexity bound: Ω( N log N ) . Algorithm: for each cell C i = Pow ω P ( p i ) ∩ S 2 1. Compute implicitely the intersection between every edge of C i and S 2 . Set vertices V := { } . 2. Scan the edges of every 2 -facet in clockwise order and construct oriented edges E between vertices. 14

  51. Computation of the generalized Voronoi cells P ( p i ) ∩ S 2 can ◮ in general, the cells C i := Pow ω be disconnected, have holes, etc. ◮ boundary representation: a family of oriented cycles composed of circular arcs per cell. ◮ lower complexity bound: Ω( N log N ) . Algorithm: for each cell C i = Pow ω P ( p i ) ∩ S 2 1. Compute implicitely the intersection between every edge of C i and S 2 . Set vertices V := { } . 2. Scan the edges of every 2 -facet in clockwise order and construct oriented edges E between vertices. 3. Extract oriented cycles from G = ( V , E ) . 14

  52. Computation of the generalized Voronoi cells P ( p i ) ∩ S 2 can ◮ in general, the cells C i := Pow ω be disconnected, have holes, etc. ◮ boundary representation: a family of oriented cycles composed of circular arcs per cell. ◮ lower complexity bound: Ω( N log N ) . Algorithm: for each cell C i = Pow ω P ( p i ) ∩ S 2 1. Compute implicitely the intersection between every edge of C i and S 2 . Set vertices V := { } . 2. Scan the edges of every 2 -facet in clockwise order and construct oriented edges E between vertices. 3. Extract oriented cycles from G = ( V , E ) . 4. Handle circular arcs without vertex separately. 14

  53. Computation of the generalized Voronoi cells P ( p i ) ∩ S 2 can ◮ in general, the cells C i := Pow ω be disconnected, have holes, etc. ◮ boundary representation: a family of oriented cycles composed of circular arcs per cell. ◮ lower complexity bound: Ω( N log N ) . Algorithm: for each cell C i = Pow ω P ( p i ) ∩ S 2 1. Compute implicitely the intersection between every edge of C i and S 2 . Set vertices V := { } . 2. Scan the edges of every 2 -facet in clockwise order and construct oriented edges E between vertices. 3. Extract oriented cycles from G = ( V , E ) . 4. Handle circular arcs without vertex separately. Complexity: O( N log N + C ) where C = complexity of the Power diagram. 14

  54. Numerical results (1) ν = � N i =1 ν i δ x i obtained by discretizing a picture of G. Monge. µ = uniform measure on half-sphere S 2 N = 1000 + drawing of (Vor ψ c ( y i )) (on S 2 + ) for ψ = 0 15

  55. Numerical results (1) ν = � N i =1 ν i δ x i obtained by discretizing a picture of G. Monge. µ = uniform measure on half-sphere S 2 N = 1000 + drawing of (Vor ψ c ( y i )) (on S 2 + ) for ψ sol 15

  56. Numerical results (1) ν = � N i =1 ν i δ x i obtained by discretizing a picture of G. Monge. µ = uniform measure on half-sphere S 2 N = 1000 + rendering of the image reflected at infinity (using LuxRender) 15

  57. Numerical results (2) ν = � N i =1 ν i δ x i obtained by discretizing a picture of G. Monge. µ = uniform measure on half-sphere S 2 N = 15000 + drawing of (Vor ψ c ( y i )) (on S 2 + ) for ψ sol 16

  58. Numerical results (2) ν = � N i =1 ν i δ x i obtained by discretizing a picture of G. Monge. µ = uniform measure on half-sphere S 2 N = 15000 + solution to the far-field reflector problem: R ( κ sol ) 16

  59. Numerical results (2) ν = � N i =1 ν i δ x i obtained by discretizing a picture of G. Monge. µ = uniform measure on half-sphere S 2 N = 15000 + rendering of the image reflected at infinity (using LuxRender) 16

  60. 3. Complexity of paraboloid intersection 17

  61. Complexity of the paraboloid intersection (PI) Theorem: For N paraboloids, the complexity of the diagram (PI i ( � κ )) 1 ≤ i ≤ N is O ( N ) . 18

  62. Complexity of the paraboloid intersection (PI) Theorem: For N paraboloids, the complexity of the diagram (PI i ( � κ )) 1 ≤ i ≤ N is O ( N ) . Complexity: E + F + V , where E = # edges V = # vertices F = total # of connected components 18

  63. Complexity of the paraboloid intersection (PI) Theorem: For N paraboloids, the complexity of the diagram (PI i ( � κ )) 1 ≤ i ≤ N is O ( N ) . Proof: ◮ F ≤ N 18

  64. Complexity of the paraboloid intersection (PI) Theorem: For N paraboloids, the complexity of the diagram (PI i ( � κ )) 1 ≤ i ≤ N is O ( N ) . Proof: Lemma: The projection of ∂P i ∩ P j onto the plane { y ⊥ i } is a disc. ◮ F ≤ N { y i } ⊥ P j P 3 { y 3 } ⊥ R ( � κ ) ∩ ∂P 3 ( κ 3 ) PI 3 ( � κ ) o P 2 o P 1 P i 18

  65. Complexity of the paraboloid intersection (PI) Theorem: For N paraboloids, the complexity of the diagram (PI i ( � κ )) 1 ≤ i ≤ N is O ( N ) . Proof: Lemma: The projection of ∂P i ∩ P j onto the plane { y ⊥ i } is a disc. ◮ F ≤ N { y i } ⊥ P j P 3 { y 3 } ⊥ R ( � κ ) ∩ ∂P 3 ( κ 3 ) PI 3 ( � κ ) o P 2 o P 1 P i κ ) ∩ ∂P i on { y i } ⊥ is convex ⇒ the projection of R ( � = 18

  66. Complexity of the paraboloid intersection (PI) Theorem: For N paraboloids, the complexity of the diagram (PI i ( � κ )) 1 ≤ i ≤ N is O ( N ) . Proof: Lemma: The projection of ∂P i ∩ P j onto the plane { y ⊥ i } is a disc. ◮ F ≤ N { y i } ⊥ P j P 3 { y 3 } ⊥ R ( � κ ) ∩ ∂P 3 ( κ 3 ) PI 3 ( � κ ) o P 2 o P 1 P i κ ) ∩ ∂P i on { y i } ⊥ is convex ⇒ the projection of R ( � = = ⇒ PI i ( � κ ) is connected. 18

  67. Complexity of the paraboloid intersection (PI) Theorem: For N paraboloids, the complexity of the diagram (PI i ( � κ )) 1 ≤ i ≤ N is O ( N ) . Proof: ◮ F ≤ N ◮ Every vertex has 3 edges ⇒ 3 V ≤ 2 E . 18

  68. Complexity of the paraboloid intersection (PI) Theorem: For N paraboloids, the complexity of the diagram (PI i ( � κ )) 1 ≤ i ≤ N is O ( N ) . Proof: ◮ F ≤ N ◮ Every vertex has 3 edges ⇒ 3 V ≤ 2 E . ◮ Euler’s formula V − E + F = 2 implies V ≤ 2 F − 4 and E ≤ 3 F − 6 . 18

  69. Complexity of PI computation: lower bound Proposition: Computing (PI i ( � κ )) i requires at least Ω( N log N ) operations. 19

  70. Complexity of PI computation: lower bound Proposition: Computing (PI i ( � κ )) i requires at least Ω( N log N ) operations. Proof: reduction to a sorting problem 19

  71. Complexity of PI computation: lower bound Proposition: Computing (PI i ( � κ )) i requires at least Ω( N log N ) operations. Proof: reduction to a sorting problem t i ◮ Let t 1 , . . . , t N ∈ R 19

  72. Complexity of PI computation: lower bound Proposition: Computing (PI i ( � κ )) i requires at least Ω( N log N ) operations. Proof: reduction to a sorting problem t i ◮ Let t 1 , . . . , t N ∈ R ◮ y i = ϕ ( t i ) ∈ S 2 and κ i = cste . ϕ y i 19

  73. Complexity of PI computation: lower bound Proposition: Computing (PI i ( � κ )) i requires at least Ω( N log N ) operations. Proof: reduction to a sorting problem t i ◮ Let t 1 , . . . , t N ∈ R ◮ y i = ϕ ( t i ) ∈ S 2 and κ i = cste . ϕ κ ) = Pow ω P ( − y i ) ∩ S 2 ◮ PI i ( � with p i = − y i and ω i = cste . p i y i 19

  74. Complexity of PI computation: lower bound Proposition: Computing (PI i ( � κ )) i requires at least Ω( N log N ) operations. Proof: reduction to a sorting problem t i ◮ Let t 1 , . . . , t N ∈ R ◮ y i = ϕ ( t i ) ∈ S 2 and κ i = cste . ϕ κ ) = Pow ω P ( − y i ) ∩ S 2 ◮ PI i ( � with p i = − y i and ω i = cste . p i y i 19

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend