on exact polya putinar s representations
play

On Exact Polya & Putinars Representations Victor Magron , CNRS - PowerPoint PPT Presentation

On Exact Polya & Putinars Representations Victor Magron , CNRS Joint work with Mohab Safey El Din (Sorbonne Univ. -INRIA-LIP6 CNRS) ISSAC 17 th July 2018 p p 1 4 ( 1 + x 2 + x 4 ) x Deciding Non-negativity co-NP hard problem: check


  1. On Exact Polya & Putinar’s Representations Victor Magron , CNRS Joint work with Mohab Safey El Din (Sorbonne Univ. -INRIA-LIP6 CNRS) ISSAC 17 th July 2018 p p ε 1 4 ( 1 + x 2 + x 4 ) x

  2. Deciding Non-negativity co-NP hard problem: check f � 0 on K X = ( X 1 , . . . , X n ) f ∈ Q [ X ] Victor Magron On Exact Polya & Putinar’s Representations 1 / 21

  3. Deciding Non-negativity co-NP hard problem: check f � 0 on K X = ( X 1 , . . . , X n ) f ∈ Q [ X ] 1 Unconstrained � K = R n 2 Constrained � K = { x ∈ R n : g 1 ( x ) � 0, . . . , g m ( x ) � 0 } g j ∈ Q [ X ] deg f , deg g j � d [Collins 75] CAD doubly exp. in n poly. in d [Grigoriev-Vorobjov 88, Basu-Pollack-Roy 98] Critical points singly exponential time ( m + 1 ) τ d O ( n ) Victor Magron On Exact Polya & Putinar’s Representations 1 / 21

  4. Certifying Non-negativity Sums of squares (SOS) σ = h 12 + · · · + h p 2 Victor Magron On Exact Polya & Putinar’s Representations 2 / 21

  5. Certifying Non-negativity Sums of squares (SOS) σ = h 12 + · · · + h p 2 H ILBERT 17 TH P ROBLEM : f SOS of rational functions? [Artin 27] YES ! [Lasserre/Parrilo 01] Numerical solvers compute σ Semidefinite programming (SDP) � approximate certificates f = 4 X 4 1 + 4 X 3 1 X 2 − 7 X 2 1 X 2 2 − 2 X 1 X 3 2 + 10 X 4 2 2 ) 2 + ( 4 2 ) 2 + ( 2 f ≃ σ = ( 2 X 2 1 + X 1 X 2 − 8 3 X 2 3 X 1 X 2 + 3 2 X 2 7 X 2 2 ) 2 Victor Magron On Exact Polya & Putinar’s Representations 2 / 21

  6. Certifying Non-negativity Sums of squares (SOS) σ = h 12 + · · · + h p 2 H ILBERT 17 TH P ROBLEM : f SOS of rational functions? [Artin 27] YES ! [Lasserre/Parrilo 01] Numerical solvers compute σ Semidefinite programming (SDP) � approximate certificates f = 4 X 4 1 + 4 X 3 1 X 2 − 7 X 2 1 X 2 2 − 2 X 1 X 3 2 + 10 X 4 2 2 ) 2 + ( 4 2 ) 2 + ( 2 f ≃ σ = ( 2 X 2 1 + X 1 X 2 − 8 3 X 2 3 X 1 X 2 + 3 2 X 2 7 X 2 2 ) 2 f = σ + 8 2 − 2 2 + 983 9 X 2 1 X 2 3 X 1 X 3 1764 X 4 2 Victor Magron On Exact Polya & Putinar’s Representations 2 / 21

  7. Certifying Non-negativity Sums of squares (SOS) σ = h 12 + · · · + h p 2 H ILBERT 17 TH P ROBLEM : f SOS of rational functions? [Artin 27] YES ! [Lasserre/Parrilo 01] Numerical solvers compute σ Semidefinite programming (SDP) � approximate certificates f = 4 X 4 1 + 4 X 3 1 X 2 − 7 X 2 1 X 2 2 − 2 X 1 X 3 2 + 10 X 4 2 2 ) 2 + ( 4 2 ) 2 + ( 2 f ≃ σ = ( 2 X 2 1 + X 1 X 2 − 8 3 X 2 3 X 1 X 2 + 3 2 X 2 7 X 2 2 ) 2 f = σ + 8 2 − 2 2 + 983 9 X 2 1 X 2 3 X 1 X 3 1764 X 4 2 → ≃ = The Question of Exact Certification How to go from approximate to exact certification? Victor Magron On Exact Polya & Putinar’s Representations 2 / 21

  8. Certifying Non-negativity σ 1 Polya ’s representation f = ( X 1 + ··· + X n ) 2 D positive definite form f [Reznick 95] 2 Putinar ’s representation f = σ 0 + σ 1 g 1 + · · · + σ m g m f > 0 on compact K deg σ i � 2 D [Putinar 93] Victor Magron On Exact Polya & Putinar’s Representations 3 / 21

  9. One Answer when K = R n Hybrid S YMBOLIC /N UMERIC methods [Peyrl-Parrilo 08] [Kaltofen-Yang-Zhi 08] � can handle degenerate situations when f ∈ ∂ Σ f ( X ) ≃ v DT ( X ) ˜ ˜ Q v D ( X ) Q � 0 v D ( X ) : vector of monomials of deg � D Victor Magron On Exact Polya & Putinar’s Representations 4 / 21

  10. One Answer when K = R n Hybrid S YMBOLIC /N UMERIC methods [Peyrl-Parrilo 08] [Kaltofen-Yang-Zhi 08] � can handle degenerate situations when f ∈ ∂ Σ f ( X ) ≃ v DT ( X ) ˜ ˜ Q v D ( X ) Q � 0 v D ( X ) : vector of monomials of deg � D → ≃ = ˜ Q Rounding Q Projection ∏ ( Q ) f ( X ) = v DT ( X ) ∏ ( Q ) v D ( X ) ∏ ( Q ) � 0 when ε → 0 Victor Magron On Exact Polya & Putinar’s Representations 4 / 21

  11. One Answer when K = R n Hybrid S YMBOLIC /N UMERIC methods [Peyrl-Parrilo 08] [Kaltofen-Yang-Zhi 08] � can handle degenerate situations when f ∈ ∂ Σ f ( X ) ≃ v DT ( X ) ˜ ˜ Q v D ( X ) Q � 0 v D ( X ) : vector of monomials of deg � D → ≃ = ˜ Q Rounding Q Projection ∏ ( Q ) f ( X ) = v DT ( X ) ∏ ( Q ) v D ( X ) ∏ ( Q ) � 0 when ε → 0 C OMPLEXITY ? Victor Magron On Exact Polya & Putinar’s Representations 4 / 21

  12. One Answer when K = { x ∈ R n : g j ( x ) � 0 } Hybrid S YMBOLIC /N UMERIC methods Magron-Allamigeon-Gaubert-Werner 14 f ≃ ˜ σ 0 + ˜ σ 1 g 1 + · · · + ˜ σ m g m u = f − ˜ σ 0 + ˜ σ 1 g 1 + · · · + ˜ σ m g m Victor Magron On Exact Polya & Putinar’s Representations 5 / 21

  13. One Answer when K = { x ∈ R n : g j ( x ) � 0 } Hybrid S YMBOLIC /N UMERIC methods Magron-Allamigeon-Gaubert-Werner 14 Compact K ⊆ [ 0, 1 ] n f ≃ ˜ σ 0 + ˜ σ 1 g 1 + · · · + ˜ σ m g m u = f − ˜ σ 0 + ˜ σ 1 g 1 + · · · + ˜ σ m g m → ≃ = ∀ x ∈ [ 0, 1 ] n , u ( x ) � − ε min K f � ε when ε → 0 C OMPLEXITY ? Victor Magron On Exact Polya & Putinar’s Representations 5 / 21

  14. Related Work: Exact Methods Existence Question Does there exist h i ∈ Q [ X ] , c i ∈ Q > 0 s.t. f = ∑ i c i h i 2 ? Victor Magron On Exact Polya & Putinar’s Representations 6 / 21

  15. Related Work: Exact Methods Existence Question Does there exist h i ∈ Q [ X ] , c i ∈ Q > 0 s.t. f = ∑ i c i h i 2 ? n = 1 deg f = d f = c 1 h 12 + c 2 h 22 + c 3 h 32 + c 4 h 42 + c 5 h 52 [Pourchet 72] f = c 1 h 12 + · · · + c d h d 2 [Schweighofer 99] f = c 1 h 12 + · · · + c d + 3 h d + 32 [Chevillard et. al 11] Victor Magron On Exact Polya & Putinar’s Representations 6 / 21

  16. Related Work: Exact Methods Existence Question Does there exist h i ∈ Q [ X ] , c i ∈ Q > 0 s.t. f = ∑ i c i h i 2 ? n = 1 deg f = d f = c 1 h 12 + c 2 h 22 + c 3 h 32 + c 4 h 42 + c 5 h 52 [Pourchet 72] f = c 1 h 12 + · · · + c d h d 2 [Schweighofer 99] f = c 1 h 12 + · · · + c d + 3 h d + 32 [Chevillard et. al 11] deg f = d n > 1 SOS with Exact LMIs f = v dT ( X ) G v dT ( X ) G � 0 Solving over the rationals [Guo-Safey El Din-Zhi 13] Solving over the reals [Henrion-Naldi-Safey El Din 16] Victor Magron On Exact Polya & Putinar’s Representations 6 / 21

  17. The Cost of Exact Polynomial Optimization f ∈ Q [ X ] ∩ ˚ f Σ [ X ] (interior of the SOS cone) Σ deg f = d bit size τ Complexity Question(s) What is the output bit size of ∑ i c i h i 2 ? σ f = 1 Polya ’s representation ( X 1 + ··· + X n ) 2 D positive definite form f f = σ 0 + σ 1 g 1 + · · · + σ m g m 2 Putinar ’s representation f > 0 on compact K deg σ i � 2 D Exact algorithm ? B OUNDS on D , τ ( σ i ) ? Victor Magron On Exact Polya & Putinar’s Representations 7 / 21

  18. Contributions f ∈ Q [ X ] ∩ ˚ f Σ [ X ] (interior of the SOS cone) Σ bit size τ deg f = d Complexity cost of certifying non-negativity Algorithm intsos � OUTPUT B IT S IZE = τ d O ( n ) Similar complexity cost d O ( n ) for Deciding 1 Polya ’s representation Algorithm Polyasos OUTPUT B IT S IZE = 2 τ d O ( n ) positive definite form f 2 Putinar ’s representation Algorithm Putinarsos OUTPUT B IT S IZE = O ( 2 τ d n C K ) f > 0 on compact K Victor Magron On Exact Polya & Putinar’s Representations 8 / 21

  19. Deciding Non-negativity Exact SOS Representations Exact Polya’s Representations Exact Putinar’s Representations Benchmarks Conclusion and Perspectives

  20. intsos with n = 1 and Root Approximation Algorithm from [Chevillard-Harrison-Joldes-Lauter 11] p p ∈ Q [ X ] , deg p = d = 2 k , p > 0 x p = 1 + X + X 2 + X 3 + X 4 Victor Magron On Exact Polya & Putinar’s Representations 9 / 21

  21. intsos with n = 1 and Root Approximation Algorithm from [Chevillard-Harrison-Joldes-Lauter 11] p p ε p ∈ Q [ X ] , deg p = d = 2 k , p > 0 P ERTURB : find ε ∈ Q s.t. 4 ( 1 + x 2 + x 4 ) 1 k X 2 i > 0 ∑ p ε : = p − ε x i = 0 p = 1 + X + X 2 + X 3 + X 4 ε = 1 4 p > 1 4 ( 1 + X 2 + X 4 ) Victor Magron On Exact Polya & Putinar’s Representations 9 / 21

  22. intsos with n = 1 and Root Approximation Algorithm from [Chevillard-Harrison-Joldes-Lauter 11] p p ∈ Q [ X ] , deg p = d = 2 k , p > 0 p ε P ERTURB : find ε ∈ Q s.t. k X 2 i > 0 ∑ p ε : = p − ε i = 0 4 ( 1 + x 2 + x 4 ) 1 Root isolation: x k X 2 i = s 12 + s 22 + u ∑ p − ε p = 1 + X + X 2 + X 3 + X 4 i = 0 ε = 1 A BSORB : small enough u i 4 i = 0 X 2 i + u SOS ⇒ ε ∑ k = p > 1 4 ( 1 + X 2 + X 4 ) Victor Magron On Exact Polya & Putinar’s Representations 9 / 21

  23. intsos with n = 1 and Root Approximation Input : f � 0 ∈ Q [ X ] of degree d � 2 , ε ∈ Q > 0 , δ ∈ N > 0 Output : SOS decomposition with coefficients in Q h , s 1 , s 2 , ε , u f ( p , h ) ← sqrfree ( f ) k ∑ X 2 i ( s 1 , s 2 ) ← sum2squares ( p ε , δ ) p ε ← p − ε u ← p ε − s 12 − s 22 i = 0 ε ← ε δ ← 2 δ 2 while while p ε ≤ 0 ε < | u 2 i + 1 | + | u 2 i − 1 | − u 2 i 2 Victor Magron On Exact Polya & Putinar’s Representations 10 / 21

  24. intsos with n = 1 and SDP Approximation Input : f � 0 ∈ Q [ X ] of degree d � 2 , ε ∈ Q > 0 , δ ∈ N > 0 Output : SOS decomposition with coefficients in Q h , ˜ σ , ε , u f ( p , h ) ← sqrfree ( f ) k X 2 i ∑ p ε ← p − ε σ ← sdp ( p ε , δ ) ˜ i = 0 u ← p ε − ˜ σ ε ← ε δ ← 2 δ 2 while while p ε ≤ 0 ε < | u 2 i + 1 | + | u 2 i − 1 | − u 2 i 2 Victor Magron On Exact Polya & Putinar’s Representations 11 / 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend