on exact polynomial optimization
play

On Exact Polynomial Optimization Victor Magron , CNRS Joint work - PowerPoint PPT Presentation

On Exact Polynomial Optimization Victor Magron , CNRS Joint work with Mohab Safey El Din (Sorbonne Univ. -INRIA-LIP6) Markus Schweighofer (Konstanz University) Institut fr Mathematik, TU Berlin 25 th April 2018 p p 4 ( 1 + x 2 + x 4 ) 1


  1. SDP for Polynomial Optimization NP hard General Problem : f ∗ : = min x ∈ K f ( x ) Semialgebraic set K : = { x ∈ R n : g 1 ( x ) � 0, . . . , g m ( x ) � 0 } � : = [ 0, 1 ] 2 = { x ∈ R 2 : x 1 ( 1 − x 1 ) � 0, x 2 ( 1 − x 2 ) � 0 } σ 0 σ 1 σ 2 � �� � g 1 g 2 f ���� ���� � � 2 x 1 x 2 + 1 1 x 1 + x 2 − 1 1 � �� � 1 � �� � ���� 8 = + x 1 ( 1 − x 1 ) + x 2 ( 1 − x 2 ) 2 2 2 2 Sums of squares (SOS) σ i Bounded degree: � � σ 0 + ∑ m Q k ( K ) : = j = 1 σ j g j , with deg σ j g j � 2 k Victor Magron On Exact Polynomial Optimization 8 / 46

  2. SDP for Polynomial Optimization Hierarchy of SDP relaxations : � � λ k : = sup λ : f − λ ∈ Q k ( K ) λ Convergence guarantees λ k ↑ f ∗ [Lasserre 01] Can be computed with SDP solvers ( CSDP , SDPA ) “No Free Lunch” Rule : ( n + 2 k n ) SDP variables Victor Magron On Exact Polynomial Optimization 9 / 46

  3. One Answer when K = R n Hybrid S YMBOLIC /N UMERIC methods [Peyrl-Parrilo 08] [Kaltofen et. al 08] f ( X ) ≃ v DT ( X ) ˜ Q v D ( X ) 0 � ˜ Q ∈ R D × D v D ( X ) = ( 1, X 1 , . . . , X n , X 2 1 , . . . , X D n ) Victor Magron On Exact Polynomial Optimization 10 / 46

  4. One Answer when K = R n Hybrid S YMBOLIC /N UMERIC methods [Peyrl-Parrilo 08] [Kaltofen et. al 08] f ( X ) ≃ v DT ( X ) ˜ Q v D ( X ) 0 � ˜ Q ∈ R D × D v D ( X ) = ( 1, X 1 , . . . , X n , X 2 1 , . . . , X D n ) → ≃ = ˜ Q Rounding Q Projection ∏ ( Q ) f ( X ) = v DT ( X ) ∏ ( Q ) v D ( X ) ∏ ( Q ) � 0 when ε → 0 Victor Magron On Exact Polynomial Optimization 10 / 46

  5. One Answer when K = R n Hybrid S YMBOLIC /N UMERIC methods [Peyrl-Parrilo 08] [Kaltofen et. al 08] f ( X ) ≃ v DT ( X ) ˜ Q v D ( X ) 0 � ˜ Q ∈ R D × D v D ( X ) = ( 1, X 1 , . . . , X n , X 2 1 , . . . , X D n ) → ≃ = ˜ Q Rounding Q Projection ∏ ( Q ) f ( X ) = v DT ( X ) ∏ ( Q ) v D ( X ) ∏ ( Q ) � 0 when ε → 0 C OMPLEXITY ? Victor Magron On Exact Polynomial Optimization 10 / 46

  6. One Answer when K = { x ∈ R n : g j ( x ) � 0 } Hybrid S YMBOLIC /N UMERIC methods Magron-Allamigeon-Gaubert-Werner 14 f ≃ ˜ σ 0 + ˜ σ 1 g 1 + · · · + ˜ σ m g m u = f − ˜ σ 0 + ˜ σ 1 g 1 + · · · + ˜ σ m g m Victor Magron On Exact Polynomial Optimization 11 / 46

  7. One Answer when K = { x ∈ R n : g j ( x ) � 0 } Hybrid S YMBOLIC /N UMERIC methods Magron-Allamigeon-Gaubert-Werner 14 Compact K ⊆ [ 0, 1 ] n f ≃ ˜ σ 0 + ˜ σ 1 g 1 + · · · + ˜ σ m g m u = f − ˜ σ 0 + ˜ σ 1 g 1 + · · · + ˜ σ m g m → ≃ = ∀ x ∈ [ 0, 1 ] n , u ( x ) � − ε min K f � ε when ε → 0 C OMPLEXITY ? Victor Magron On Exact Polynomial Optimization 11 / 46

  8. Related Work: Exact Methods Existence Question Does there exist h i ∈ Q [ X ] , c i ∈ Q > 0 s.t. f = ∑ i c i h i 2 ? Victor Magron On Exact Polynomial Optimization 12 / 46

  9. Related Work: Exact Methods Existence Question Does there exist h i ∈ Q [ X ] , c i ∈ Q > 0 s.t. f = ∑ i c i h i 2 ? n = 1 deg f = d f = c 1 h 12 + c 2 h 22 + c 3 h 32 + c 4 h 42 + c 5 h 52 [Pourchet 72] f = c 1 h 12 + · · · + c d h d 2 [Schweighofer 99] f = c 1 h 12 + · · · + c d + 3 h d + 32 [Chevillard et. al 11] Victor Magron On Exact Polynomial Optimization 12 / 46

  10. Related Work: Exact Methods Existence Question Does there exist h i ∈ Q [ X ] , c i ∈ Q > 0 s.t. f = ∑ i c i h i 2 ? n = 1 deg f = d f = c 1 h 12 + c 2 h 22 + c 3 h 32 + c 4 h 42 + c 5 h 52 [Pourchet 72] f = c 1 h 12 + · · · + c d h d 2 [Schweighofer 99] f = c 1 h 12 + · · · + c d + 3 h d + 32 [Chevillard et. al 11] n > 1 deg f = d SOS with Exact LMIs f ( X ) = v dT ( X ) G v dT ( X ) G � 0 Critical point methods [Greuet et. al 11] CAD [Iwane 13] � τ d O ( n ) Solving over the rationals [Guo et. al 13] Determinantial varieties [Henrion et. al 16] Victor Magron On Exact Polynomial Optimization 12 / 46

  11. Contribution: n = 1 f ∈ Q [ X ] ∩ ˚ Σ [ X ] (interior of the SOS cone) with bit size τ Existence Question Does there exist f i ∈ Q [ X ] , c i ∈ Q > 0 s.t. f = ∑ i c i f i 2 ? Complexity Question What is the output bitsize of ∑ i c i f i 2 ? Victor Magron On Exact Polynomial Optimization 13 / 46

  12. Contribution: n = 1 Two methods answering the questions: f = c 1 h 12 + · · · + c d h d 2 [Schweighofer 99] 3 d � Algorithm univsos1 with output size τ 1 = O (( d 2 ) 2 τ ) f = c 1 h 12 + · · · + c d + 3 h d + 32 [Chevillard et. al 11] � Algorithm univsos2 with output size τ 2 = O ( d 4 τ ) Maple package https://github.com/magronv/univsos Victor Magron On Exact Polynomial Optimization 13 / 46

  13. Contribution: n � 1 f ∈ Q [ X ] ∩ ˚ f Σ [ X ] (interior of the SOS cone) Σ deg f = d bit size τ Complexity Cost Algorithm intsos � OUTPUT B IT S IZE = τ d O ( n ) σ f = 1 Polya ’s representation ( X 1 + ··· + X n ) 2 D (positive definite forms) Algorithm Polyasos � OUTPUT B IT S IZE = 2 τ d O ( n ) f = σ 0 + σ 1 g 1 + · · · + σ m g m 2 Putinar ’s representation ( f > 0 + K compact) deg σ i � 2 D Algorithm Putinarsos � OUTPUT B IT S IZE = O ( 2 τ d n C K ) Victor Magron On Exact Polynomial Optimization 14 / 46

  14. Certify Polynomial Non-negativity The Question(s) Exact SOS Representations: n = 1 Exact SOS Representations: n � 1 Exact Polya’s Representations Exact Putinar’s Representations Conclusion and Perspectives

  15. univsos1 : Outline [Schweighofer 99] f f ∈ Q [ X ] and f > 0 Minimizer a may not be in Q . . . x a f = 1 + X + X 2 + X 3 + X 4 √ 6 ) 1/3 6 ) 1/3 − 4 ( 135 + 60 5 − 1 a = √ 12 4 4 ( 135 + 60 Victor Magron On Exact Polynomial Optimization 15 / 46

  16. univsos1 : Outline [Schweighofer 99] f f ∈ Q [ X ] and f > 0 f t Minimizer a may not be in Q . . . Find f t ∈ Q [ X ] s.t. : deg f t � 2 f t � 0 x f � f t t a f = 1 + X + X 2 + X 3 + X 4 f − f t has a root t ∈ Q √ 6 ) 1/3 6 ) 1/3 − 4 ( 135 + 60 5 − 1 a = √ 12 4 4 ( 135 + 60 f t = X 2 t = − 1 Victor Magron On Exact Polynomial Optimization 15 / 46

  17. univsos1 : Outline [Schweighofer 99] f f ∈ Q [ X ] and f > 0 Minimizer a may not be in Q . . . f t Square-free decomposition: f − f t = gh 2 deg g � deg f − 2 x t a g > 0 f = 1 + X + X 2 + X 3 + X 4 f t = X 2 Do it again on g f − f t = ( X 2 + 2 X + 1 )( X + 1 ) 2 Victor Magron On Exact Polynomial Optimization 15 / 46

  18. univsos1 : Algorithm [Schweighofer 99] Input : f � 0 ∈ Q [ X ] of degree d � 2 Output : SOS decomposition with coefficients in Q f f t ← parab ( f ) h , f t while ( g , h ) ← sqrfree ( f − f t ) deg f > 2 f ← g Victor Magron On Exact Polynomial Optimization 16 / 46

  19. univsos1 : Local Inequality Lemma [Schweighofer 99] f t : = f ( t ) + f ′ ( t )( X − t ) + f ′ ( t ) 2 4 f ( t )( X − t ) 2 ∈ Q [ X ] . f > 0, ∃ neighborhood U of local min a s.t. f t ( x ) � f ( x ) ∀ t , x ∈ U Victor Magron On Exact Polynomial Optimization 17 / 46

  20. univsos1 : Local Inequality Lemma [Schweighofer 99] f t : = f ( t ) + f ′ ( t )( X − t ) + f ′ ( t ) 2 4 f ( t )( X − t ) 2 ∈ Q [ X ] . f > 0, ∃ neighborhood U of local min a s.t. f t ( x ) � f ( x ) ∀ t , x ∈ U Proof. d = 2 Rolle’s Theorem d � 4 Taylor decomposition of f at t Victor Magron On Exact Polynomial Optimization 17 / 46

  21. univsos1 : Global Inequality Lemma [Schweighofer 99] f t : = f ( t ) + f ′ ( t )( X − t ) + f ′ ( t ) 2 4 f ( t )( X − t ) 2 ∈ Q [ X ] . f > 0, ∃ neighborhood U of smallest global min a s.t. f t ( x ) � f ( x ) ∀ t ∈ U , ∀ x ∈ R Victor Magron On Exact Polynomial Optimization 18 / 46

  22. univsos1 : Global Inequality Lemma [Schweighofer 99] f t : = f ( t ) + f ′ ( t )( X − t ) + f ′ ( t ) 2 4 f ( t )( X − t ) 2 ∈ Q [ X ] . f > 0, ∃ neighborhood U of smallest global min a s.t. f t ( x ) � f ( x ) ∀ t ∈ U , ∀ x ∈ R Proof. t = f ′ ( t ) 2 f ′′ d = 2 2 f ( t ) Taylor Decomposition of f at t Negative discriminant of f : f ′ ( t ) 2 − 4 f ( t ) f ′′ ( t ) < 0 2 Victor Magron On Exact Polynomial Optimization 18 / 46

  23. univsos1 : Global Inequality Lemma [Schweighofer 99] f t : = f ( t ) + f ′ ( t )( X − t ) + f ′ ( t ) 2 4 f ( t )( X − t ) 2 ∈ Q [ X ] . f > 0, ∃ neighborhood U of smallest global min a s.t. f t ( x ) � f ( x ) ∀ t ∈ U , ∀ x ∈ R Proof. f − f t = ∑ n i = 0 a it X i U = [ a − ǫ , a + ǫ ] (Local Ineq) d � 4 � � | a dt | , . . . , | a ( d − 1 ) t | 1, | a 0 t | Cauchy bound: C t : = max � C | a dt | Smallest global min a : � 5 cases ( − ∞ , C ] [ − C , a − ǫ ] [ a − ǫ , a ) [ a , C ) [ C , ∞ ) Victor Magron On Exact Polynomial Optimization 18 / 46

  24. univsos1 : Nichtnegativstellensätz Theorem [Schweighofer 99] Let f ∈ Q [ X ] , deg f = d . f � 0 on R ⇔ ∃ c i ∈ Q � 0 , f i ∈ Q [ X ] s.t. f = c 1 f 12 + · · · + c d f d 2 Victor Magron On Exact Polynomial Optimization 19 / 46

  25. univsos1 : Nichtnegativstellensätz Theorem [Schweighofer 99] Let f ∈ Q [ X ] , deg f = d . f � 0 on R ⇔ ∃ c i ∈ Q � 0 , f i ∈ Q [ X ] s.t. f = c 1 f 12 + · · · + c d f d 2 Proof by induction. d = 2 f = a 2 X 2 + a 1 X + a 0 = a 2 ( X + a 1 2 a 2 ) 2 + ( a 0 − a 12 4 a 2 ) Discriminant a 12 − 4 a 2 a 0 � 0 Victor Magron On Exact Polynomial Optimization 19 / 46

  26. univsos1 : Nichtnegativstellensätz Theorem [Schweighofer 99] Let f ∈ Q [ X ] , deg f = d . f � 0 on R ⇔ ∃ c i ∈ Q � 0 , f i ∈ Q [ X ] s.t. f = c 1 f 12 + · · · + c d f d 2 Proof by induction. d � 4 ⇒ f = g h 2 f not square-free = ⇒ f > 0, ∃ f t � 0 s.t. f − f t = g ( X − t ) 2 f square-free = Victor Magron On Exact Polynomial Optimization 19 / 46

  27. univsos1 : Bitsize of t Lemma Let 0 < f ∈ Z [ X ] with bitsize τ , deg f = d . Let t ∈ Q , f t : = f ( t ) + f ′ ( t )( X − t ) + f ′ ( t ) 2 4 f ( t ) ( X − t ) 2 s.t. f − f t > 0. Then τ ( t ) = O ( d 2 τ ) Victor Magron On Exact Polynomial Optimization 20 / 46

  28. univsos1 : Bitsize of t Lemma Let 0 < f ∈ Z [ X ] with bitsize τ , deg f = d . Let t ∈ Q , f t : = f ( t ) + f ′ ( t )( X − t ) + f ′ ( t ) 2 4 f ( t ) ( X − t ) 2 s.t. f − f t > 0. Then τ ( t ) = O ( d 2 τ ) Proof. Bitsize B of polynomials describing: { t ∈ Q | ∀ x ∈ R , f ( t ) 2 + f ′ ( t ) f ( t )( x − t ) + f ′ ( t ) 2 ( x − t ) 2 � 4 f ( t ) f ( x ) } B = O ( d 2 τ ) Quantifier elimination/CAD [BPR 06]: Victor Magron On Exact Polynomial Optimization 20 / 46

  29. univsos1 : Bitsize of Square-free Part Lemma Let 0 < f ∈ Z [ X ] with bitsize τ , deg f = d . Let t ∈ Q , f t : = f ( t ) + f ′ ( t )( X − t ) + f ′ ( t ) 2 4 f ( t ) ( X − t ) 2 s.t. f − f t > 0. Then ∃ ˆ f , ˆ f t , g ∈ Z [ X ] s.t. ˆ f − ˆ f t = ( X − t ) 2 g τ ( f t ) = τ ( g ) = O ( d 3 τ ) Victor Magron On Exact Polynomial Optimization 21 / 46

  30. univsos1 : Bitsize of Square-free Part Lemma Let 0 < f ∈ Z [ X ] with bitsize τ , deg f = d . Let t ∈ Q , f t : = f ( t ) + f ′ ( t )( X − t ) + f ′ ( t ) 2 4 f ( t ) ( X − t ) 2 s.t. f − f t > 0. Then ∃ ˆ f , ˆ f t , g ∈ Z [ X ] s.t. ˆ f − ˆ f t = ( X − t ) 2 g τ ( f t ) = τ ( g ) = O ( d 3 τ ) Proof. t = t 1 f : = t 2 d ˆ f t : = t 2 d ˆ 2 f ( t ) f ( X ) 2 f ( t ) f t ( X ) t 2 Square-free part: τ ( g ) � d − 2 + τ ( ˆ f − ˆ f t ) + log 2 ( d + 1 ) Victor Magron On Exact Polynomial Optimization 21 / 46

  31. univsos1 : Output Bitsize Theorem Let 0 < f ∈ Q [ X ] with bitsize τ , deg f = d . 3 d The output bitsize τ 1 of univsos1 on f is O (( d 2 ) 2 τ ) . Victor Magron On Exact Polynomial Optimization 22 / 46

  32. univsos1 : Output Bitsize Theorem Let 0 < f ∈ Q [ X ] with bitsize τ , deg f = d . 3 d The output bitsize τ 1 of univsos1 on f is O (( d 2 ) 2 τ ) . Proof. Worst-case: k = d /2 induction steps � � τ + k 3 τ + ( k − 1 ) 3 k 3 τ + · · · + ( k ! ) 3 τ = ⇒ τ 1 = O Victor Magron On Exact Polynomial Optimization 22 / 46

  33. univsos1 : Bit Complexity Theorem Let 0 < f ∈ Q [ X ] with bitsize τ , deg f = d . ∼ 3 d O (( d 2 τ ) . The bit complexity of univsos1 on f is 2 ) Victor Magron On Exact Polynomial Optimization 23 / 46

  34. univsos1 : Bit Complexity Theorem Let 0 < f ∈ Q [ X ] with bitsize τ , deg f = d . ∼ 3 d O (( d 2 τ ) . The bit complexity of univsos1 on f is 2 ) All involved polynomials have a global min in Z ∼ O ( d 4 + d 3 τ ) . = ⇒ the bit complexity is Victor Magron On Exact Polynomial Optimization 23 / 46

  35. univsos1 : Bit Complexity Theorem Let 0 < f ∈ Q [ X ] with bitsize τ , deg f = d . ∼ 3 d O (( d 2 τ ) . The bit complexity of univsos1 on f is 2 ) All involved polynomials have a global min in Z ∼ O ( d 4 + d 3 τ ) . = ⇒ the bit complexity is Proof. Root bitsize: τ ( t ) = O ( τ ) Square-free part: τ ( g ) = O ( d + τ ( f − f t )) = O ( d + τ ) Output bisize: τ 1 = O ( d 3 + d τ ) Victor Magron On Exact Polynomial Optimization 23 / 46

  36. univsos2 : Outline [Chevillard et. al 11] Algorithm from [Chevillard et. al 11] p p ∈ Z [ X ] , deg p = d = 2 k , p > 0 x p = 1 + X + X 2 + X 3 + X 4 Victor Magron On Exact Polynomial Optimization 24 / 46

  37. univsos2 : Outline [Chevillard et. al 11] Algorithm from [Chevillard et. al 11] p p ε p ∈ Z [ X ] , deg p = d = 2 k , p > 0 P ERTURB : find ε ∈ Q s.t. 4 ( 1 + x 2 + x 4 ) 1 k X 2 i > 0 ∑ p ε : = p − ε x i = 0 p = 1 + X + X 2 + X 3 + X 4 ε = 1 4 p > 1 4 ( 1 + X 2 + X 4 ) Victor Magron On Exact Polynomial Optimization 24 / 46

  38. univsos2 : Outline [Chevillard et. al 11] Algorithm from [Chevillard et. al 11] p p ∈ Z [ X ] , deg p = d = 2 k , p > 0 p ε P ERTURB : find ε ∈ Q s.t. k X 2 i > 0 ∑ p ε : = p − ε i = 0 4 ( 1 + x 2 + x 4 ) 1 Root isolation: x k X 2 i = s 12 + s 22 + u ∑ p − ε p = 1 + X + X 2 + X 3 + X 4 i = 0 ε = 1 A BSORB : small enough u i 4 i = 0 X 2 i + u SOS ⇒ ε ∑ k = p > 1 4 ( 1 + X 2 + X 4 ) Victor Magron On Exact Polynomial Optimization 24 / 46

  39. univsos2 : Outline [Chevillard et. al 11] Input : f � 0 ∈ Q [ X ] of degree d � 2, ε ∈ Q > 0 , δ ∈ N > 0 Output : SOS decomposition with coefficients in Q h , s 1 , s 2 , ε , u f ( p , h ) ← sqrfree ( f ) k X 2 i ∑ ( s 1 , s 2 ) ← sum2squares ( p ε , δ ) p ε ← p − ε u ← p ε − s 12 − s 22 i = 0 ε ← ε δ ← 2 δ 2 while while p ε ≤ 0 ε < | u 2 i + 1 | + | u 2 i − 1 | − u 2 i 2 Victor Magron On Exact Polynomial Optimization 25 / 46

  40. univsos2 : Absorbtion � ( X + 1 ) 2 − 1 − X 2 � X = 1 2 � ( X − 1 ) 2 − 1 − X 2 � − X = 1 2 Victor Magron On Exact Polynomial Optimization 26 / 46

  41. univsos2 : Absorbtion � ( X + 1 ) 2 − 1 − X 2 � X = 1 2 � ( X − 1 ) 2 − 1 − X 2 � − X = 1 2 u 2 i + 1 X 2 i + 1 = | u 2 i + 1 | � ( X i + 1 + sgn ( u 2 i + 1 ) X i ) 2 − X 2 i − X 2 i + 2 � 2 Victor Magron On Exact Polynomial Optimization 26 / 46

  42. univsos2 : Absorbtion � ( X + 1 ) 2 − 1 − X 2 � X = 1 2 � ( X − 1 ) 2 − 1 − X 2 � − X = 1 2 u 2 i + 1 X 2 i + 1 = | u 2 i + 1 | � ( X i + 1 + sgn ( u 2 i + 1 ) X i ) 2 − X 2 i − X 2 i + 2 � 2 u · · · · · · 2 i − 2 2 i − 1 2 i 2 i + 1 2 i + 2 ε ∑ k i = 0 X 2 i ε ε ε Victor Magron On Exact Polynomial Optimization 26 / 46

  43. univsos2 : Absorbtion � ( X + 1 ) 2 − 1 − X 2 � X = 1 2 � ( X − 1 ) 2 − 1 − X 2 � − X = 1 2 u 2 i + 1 X 2 i + 1 = | u 2 i + 1 | � ( X i + 1 + sgn ( u 2 i + 1 ) X i ) 2 − X 2 i − X 2 i + 2 � 2 u · · · · · · 2 i − 2 2 i − 1 2 i 2 i + 1 2 i + 2 ε ∑ k i = 0 X 2 i ε ε ε k ε � | u 2 i + 1 | + | u 2 i − 1 | X 2 i + u ∑ − u 2 i = ⇒ ε SOS 2 i = 0 Victor Magron On Exact Polynomial Optimization 26 / 46

  44. univsos2 : Nichtnegativstellensätz Theorem [Chevillard et. al 11] Let 0 � f ∈ Z [ X ] , deg f = d . f � 0 on R ⇔ ∃ c i ∈ Q � 0 , f i ∈ Q [ X ] s.t. f = c 1 f 12 + · · · + c d + 3 f d + 3 2 Victor Magron On Exact Polynomial Optimization 27 / 46

  45. univsos2 : Nichtnegativstellensätz Theorem [Chevillard et. al 11] Let 0 � f ∈ Z [ X ] , deg f = d . f � 0 on R ⇔ ∃ c i ∈ Q � 0 , f i ∈ Q [ X ] s.t. f = c 1 f 12 + · · · + c d + 3 f d + 3 2 Proof. f = p h 2 = ⇒ 0 < p ∈ Z [ X ] , deg p = 2 k , p ε : = p − ε ∑ k i = 0 X 2 i > 0 Root isolation: p = ls 12 + ls 22 + ε ∑ k i = 0 X 2 i + u at precision δ X 2 j + 1 = ( X j + 1 + X j 2 ) 2 − ( X 2 j + 2 + X 2 j 4 ) = − ( X j + 1 − X j 2 ) 2 + ( X 2 j + 2 + X 2 j 4 ) Smallest δ s.t. ε � | u 2 i + 1 | − u 2 i + | u 2 i − 1 | 4 i = 0 X 2 i + u ⇒ weighted SOS decomposition of ε ∑ k = Victor Magron On Exact Polynomial Optimization 27 / 46

  46. univsos2 : Bitsize of Perturbed Polynomials Lemma Let 0 < p ∈ Z [ X ] with bitsize τ , deg p = d = 2 k . Then ∃ ε s.t. p ε > 0 and τ ( ε ) = d log 2 d + d τ Victor Magron On Exact Polynomial Optimization 28 / 46

  47. univsos2 : Bitsize of Perturbed Polynomials Lemma Let 0 < p ∈ Z [ X ] with bitsize τ , deg p = d = 2 k . Then ∃ ε s.t. p ε > 0 and τ ( ε ) = d log 2 d + d τ Proof. ⇒ ∃ R s.t. p ε ( x ) > 0 for | x | > R = 2 d 2 τ (Cauchy) ε : = 1/2 = inf | x | � R p 1 Smallest N s.t. ε = 2 N < 1 + R 2 ··· + R 2 k ⇒ 1 + R 2 + · · · + R 2 k < kR 2 k R > 1 = inf x ∈ R p ( x ) > ( d 2 τ ) − d + 2 2 − d log 2 d − d τ [Melczer et. al 16] Victor Magron On Exact Polynomial Optimization 28 / 46

  48. univsos2 : Bitsize of Remainder Lemma Let 0 < p ∈ Z [ X ] with bitsize τ , deg p = d = 2 k . Then k ∃ ε , s 1 , s 2 , u s.t. p = ls 12 + ls 22 + ε X 2 i + u SOS ∑ i = 0 with approx. root precision δ of p ε s.t. τ ( δ ) = d 2 + d τ Victor Magron On Exact Polynomial Optimization 29 / 46

  49. univsos2 : Bitsize of Remainder Lemma Let 0 < p ∈ Z [ X ] with bitsize τ , deg p = d = 2 k . Then k ∃ ε , s 1 , s 2 , u s.t. p = ls 12 + ls 22 + ε X 2 i + u SOS ∑ i = 0 with approx. root precision δ of p ε s.t. τ ( δ ) = d 2 + d τ Proof. i = 0 a i X i = ∏ d p ε = ∑ d e = 2 − δ i = 1 ( X − z i ) | ˆ z i | � z i ( 1 + e ) Vieta’s formula: ∑ 1 � i 1 < ··· < i j � d z i 1 . . . z i j = ( − 1 ) j a d − j l Smallest δ s.t. ε � | u 2 i + 1 | − u 2 i + | u 2 i − 1 | 4 Victor Magron On Exact Polynomial Optimization 29 / 46

  50. univsos2 : Output Bitsize Theorem Let 0 � f ∈ Z [ X ] with bitsize τ , deg f = d . The max coeff bitsize τ 2 of univsos2 on f is O ( d 3 + d 2 τ ) . Victor Magron On Exact Polynomial Optimization 30 / 46

  51. univsos2 : Output Bitsize Theorem Let 0 � f ∈ Z [ X ] with bitsize τ , deg f = d . The max coeff bitsize τ 2 of univsos2 on f is O ( d 3 + d 2 τ ) . Proof. i = 0 a i X i = ∏ d p ε = ∑ d e = 2 − δ i = 1 ( X − z i ) | ˆ z i | � z i ( 1 + e ) Square-free part: τ ( p ) = O ( d + τ ) z j | = | z j | ( 1 + 2 − δ ) � 2 τ ( p ε ) + 1 ( 1 + 2 − δ ) | [Melczer et.al 16] 1 | ˆ Victor Magron On Exact Polynomial Optimization 30 / 46

  52. univsos2 : Bit Complexity Theorem Let 0 � f ∈ Z [ X ] with bitsize τ , deg f = d . ∼ O ( d 4 + d 3 τ ) . The bit complexity of univsos2 on f is Victor Magron On Exact Polynomial Optimization 31 / 46

  53. univsos2 : Bit Complexity Theorem Let 0 � f ∈ Z [ X ] with bitsize τ , deg f = d . ∼ O ( d 4 + d 3 τ ) . The bit complexity of univsos2 on f is Proof. Root isolation with radius O ( δ + τ ( p ε )) [Melczer et.al 16]: ∼ O ( d 3 + d 2 τ ( p ε ) + d ( δ + τ ( p ε ))) Victor Magron On Exact Polynomial Optimization 31 / 46

  54. Benchmarks Maple version 16, Intel Core i7-5600U CPU (2.60 GHz) Averaging over five runs 1 univsos1 : sqrfree , real root isolation in Maple 2 univsos2 : PARI/GP implementation [Chevillard et. al 11] � sqrfree , sturm , polroots (interface Maple-PARI/GP) 3 univsos3 : SDPA-GMP solver (arbitrary precision) � sqrfree , sturm , sdp Victor Magron On Exact Polynomial Optimization 32 / 46

  55. Benchmarks: [Chevillard et. al 11] Approximation f ∈ Q [ X ] of mathematical function f math Validation of sup norm � f math − f � ∞ on a rational interval univsos1 univsos2 Id d τ (bits) τ 1 (bits) t 1 (ms) τ 2 (bits) t 2 (ms) # 1 13 22 682 3 403 023 2 352 51 992 824 # 5 34 117 307 7 309 717 82 583 265 330 5 204 # 7 43 67 399 18 976 562 330 288 152 277 11 190 # 9 20 30 414 641 561 928 68 664 1 605 Victor Magron On Exact Polynomial Optimization 33 / 46

  56. Benchmarks: [Chevillard et. al 11] Approximation f ∈ Q [ X ] of mathematical function f math Validation of sup norm � f math − f � ∞ on a rational interval univsos1 univsos2 Id d τ (bits) τ 1 (bits) t 1 (ms) τ 2 (bits) t 2 (ms) # 1 13 22 682 3 403 023 2 352 51 992 824 # 5 34 117 307 7 309 717 82 583 265 330 5 204 # 7 43 67 399 18 976 562 330 288 152 277 11 190 # 9 20 30 414 641 561 928 68 664 1 605 = ⇒ τ 1 > τ 2 t 1 > t 2 Victor Magron On Exact Polynomial Optimization 33 / 46

  57. Benchmarks: Power Sums f = 1 + X + X 2 + · · · + X d j = 1 (( X − cos θ j ) 2 + sin 2 θ j ) , with θ j : = 2 j π f = ∏ k d + 1 univsos1 univsos2 d τ 1 (bits) t 1 (ms) τ 2 (bits) t 2 (ms) 10 823 8 567 264 20 9 003 16 1 598 485 40 91 903 45 6 034 2 622 60 301 841 92 12 326 6 320 100 1 717 828 516 31 823 19 466 200 146 140 792 130 200 120 831 171 217 − − 500 2 263 423 520 5 430 000 Victor Magron On Exact Polynomial Optimization 34 / 46

  58. Benchmarks: Power Sums f = 1 + X + X 2 + · · · + X d j = 1 (( X − cos θ j ) 2 + sin 2 θ j ) , with θ j : = 2 j π f = ∏ k d + 1 univsos1 univsos2 d τ 1 (bits) t 1 (ms) τ 2 (bits) t 2 (ms) 10 823 8 567 264 20 9 003 16 1 598 485 40 91 903 45 6 034 2 622 60 301 841 92 12 326 6 320 100 1 717 828 516 31 823 19 466 200 146 140 792 130 200 120 831 171 217 − − 500 2 263 423 520 5 430 000 = ⇒ τ 1 > τ 2 t 1 < t 2 Victor Magron On Exact Polynomial Optimization 34 / 46

  59. Benchmarks: Modified Wilkinson Polynomials k ( X − j ) 2 ∏ f = 1 + j = 1 k ( X − j ) 2 ∏ a = t = 1 f t = 1 f − f t = j = 1 Relatively closed roots 1, . . . , k Victor Magron On Exact Polynomial Optimization 35 / 46

  60. Benchmarks: Modified Wilkinson Polynomials k ( X − j ) 2 ∏ f = 1 + j = 1 k ( X − j ) 2 ∏ a = t = 1 f t = 1 f − f t = j = 1 Relatively closed roots 1, . . . , k univsos1 univsos2 d τ (bits) τ 1 (bits) t 1 (ms) τ 2 (bits) t 2 (ms) 10 140 47 17 2 373 751 20 737 198 31 12 652 3 569 40 3 692 939 35 65 404 47 022 100 29 443 7 384 441 − − 500 1 022 771 255 767 73 522 Victor Magron On Exact Polynomial Optimization 35 / 46

  61. Benchmarks: Modified Wilkinson Polynomials k ( X − j ) 2 ∏ f = 1 + j = 1 k ( X − j ) 2 ∏ a = t = 1 f t = 1 f − f t = j = 1 Relatively closed roots 1, . . . , k univsos1 univsos2 d τ (bits) τ 1 (bits) t 1 (ms) τ 2 (bits) t 2 (ms) 10 140 47 17 2 373 751 20 737 198 31 12 652 3 569 40 3 692 939 35 65 404 47 022 100 29 443 7 384 441 − − 500 1 022 771 255 767 73 522 = ⇒ τ 1 < τ 2 t 1 < t 2 Victor Magron On Exact Polynomial Optimization 35 / 46

  62. Certify Polynomial Non-negativity The Question(s) Exact SOS Representations: n = 1 Exact SOS Representations: n � 1 Exact Polya’s Representations Exact Putinar’s Representations Conclusion and Perspectives

  63. intsos n = 1 & Root Approximation: univsos2 Input : f � 0 ∈ Q [ X ] of degree d � 2, ε ∈ Q > 0 , δ ∈ N > 0 Output : SOS decomposition with coefficients in Q h , s 1 , s 2 , ε , u f ( p , h ) ← sqrfree ( f ) k X 2 i ∑ ( s 1 , s 2 ) ← sum2squares ( p ε , δ ) p ε ← p − ε u ← p ε − s 12 − s 22 i = 0 ε ← ε δ ← 2 δ 2 while while p ε ≤ 0 ε < | u 2 i + 1 | + | u 2 i − 1 | − u 2 i 2 Victor Magron On Exact Polynomial Optimization 36 / 46

  64. intsos n = 1 & SDP Approximation Input : f � 0 ∈ Q [ X ] of degree d � 2, ε ∈ Q > 0 , δ ∈ N > 0 Output : SOS decomposition with coefficients in Q h , ˜ σ , ε , u f ( p , h ) ← sqrfree ( f ) k X 2 i ∑ p ε ← p − ε σ ← sdp ( p ε , δ ) ˜ i = 0 u ← p ε − ˜ σ ε ← ε δ ← 2 δ 2 while while ε < | u 2 i + 1 | + | u 2 i − 1 | p ε ≤ 0 − u 2 i 2 Victor Magron On Exact Polynomial Optimization 37 / 46

  65. intsos with n � 1 : Perturbation f Σ P ERTURBATION idea Approximate SOS Decomposition f ( X ) - ε ∑ α ∈P /2 X 2 α = ˜ σ + u Victor Magron On Exact Polynomial Optimization 38 / 46

  66. intsos with n � 1 : Absorbtion f ( X ) - ε ∑ α ∈P /2 X 2 α = ˜ σ + u Choice of P ? y 6 ε 2 ( x + y 3 ) 2 − x 2 + y 6 xy 3 = 1 5 2 4 u 1,3 3 2 1 ε x 0 1 2 3 4 5 Victor Magron On Exact Polynomial Optimization 39 / 46

  67. intsos with n � 1 : Absorbtion f ( X ) - ε ∑ α ∈P /2 X 2 α = ˜ σ + u Choice of P ? y 6 2 ( xy + y 2 ) 2 − x 2 y 2 + y 4 xy 3 = 1 5 2 ε 4 u 1,3 3 ε 2 1 x 0 1 2 3 4 5 Victor Magron On Exact Polynomial Optimization 39 / 46

  68. intsos with n � 1 : Absorbtion f ( X ) - ε ∑ α ∈P /2 X 2 α = ˜ σ + u Choice of P ? y 6 2 ( xy 2 + y ) 2 − x 2 y 4 + y 2 xy 3 = 1 5 2 ε 4 3 u 1,3 ε 2 1 x 0 1 2 3 4 5 Victor Magron On Exact Polynomial Optimization 39 / 46

  69. intsos with n � 1 : Absorbtion f ( X ) - ε ∑ α ∈P /2 X 2 α = ˜ σ + u Choice of P ? f = 4 x 4 y 6 + x 2 − xy 2 + y 2 spt ( f ) = { ( 4, 6 ) , ( 2, 0 ) , ( 1, 2 ) , ( 0, 2 ) } Newton Polytope P = conv ( spt ( f )) Squares in SOS decomposition ⊆ P 2 ∩ N n [Reznick 78] Victor Magron On Exact Polynomial Optimization 39 / 46

  70. Algorithm intsos Input : f � 0 ∈ Q [ X ] of degree d � 2, ε ∈ Q > 0 , δ ∈ N > 0 Output : SOS decomposition with coefficients in Q h , ˜ σ , ε , u f P ← conv ( spt ( f )) f ε ← f − ε ∑ X 2 α σ ← sdp ( f ε , δ ) ˜ α ∈P /2 u ← f ε − ˜ σ ε ← ε δ ← 2 δ 2 while while f ε ≤ 0 u + ε ∑ X 2 α / ∈ Σ α ∈P /2 Victor Magron On Exact Polynomial Optimization 40 / 46

  71. Algorithm intsos Theorem (Exact Certification Cost in ˚ Σ ) f ∈ Q [ X ] ∩ ˚ Σ [ X ] with deg f = d = 2 k and bit size τ ⇒ intsos terminates with SOS output of bit size τ d O ( n ) = Victor Magron On Exact Polynomial Optimization 40 / 46

  72. Algorithm intsos Theorem (Exact Certification Cost in ˚ Σ ) f ∈ Q [ X ] ∩ ˚ Σ [ X ] with deg f = d = 2 k and bit size τ ⇒ intsos terminates with SOS output of bit size τ d O ( n ) = Proof. { ε ∈ R : ∀ x ∈ R n , f ( x ) − ε ∑ α ∈P /2 x 2 α � 0 } � = ∅ ⇒ τ ( ε ) = τ d O ( n ) Quantifier Elimination [Basu et. al 06] = # Coefficients in SOS output = size( P /2) = ( n + k n ) � d n Ellipsoid algorithm for SDP [Grötschel et. al 93] Victor Magron On Exact Polynomial Optimization 40 / 46

  73. Certify Polynomial Non-negativity The Question(s) Exact SOS Representations: n = 1 Exact SOS Representations: n � 1 Exact Polya’s Representations Exact Putinar’s Representations Conclusion and Perspectives

  74. Algorithm Polyasos f positive definite form has Polya ’s representation: σ f = with σ ∈ Σ [ X ] ( X 1 + · · · + X n ) 2 D Victor Magron On Exact Polynomial Optimization 41 / 46

  75. Algorithm Polyasos f positive definite form has Polya ’s representation: σ f = with σ ∈ Σ [ X ] ( X 1 + · · · + X n ) 2 D Theorem f ( X 1 + · · · + X n ) 2 D ∈ Σ [ X ] = ⇒ f ( X 1 + · · · + X n ) 2 D + 2 ∈ ˚ Σ [ X ] Victor Magron On Exact Polynomial Optimization 41 / 46

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend