goodness of fit tests based on entropy differences
play

Goodness-of-fit tests based on -entropy differences J-F Bercher 1 , - PowerPoint PPT Presentation

Goodness-of-fit tests based on -entropy differences J-F Bercher 1 , V. Girardin 2 , J. Lequesne 2 , P. Regnault 3 Laboratoire dinformatique Gaspard-Monge, ESIEE, Marne-la-Valle, FRANCE 2 Laboratoire de Mathmatiques N. Oresme Universit


  1. Goodness-of-fit tests based on φ -entropy differences J-F Bercher 1 , V. Girardin 2 , J. Lequesne 2 , P. Regnault 3 Laboratoire d’informatique Gaspard-Monge, ESIEE, Marne-la-Vallée, FRANCE 2 Laboratoire de Mathématiques N. Oresme Université de Caen – Basse Normandie, FRANCE 3 Laboratoire de Mathématiques de Reims Université de Reims Champagne-Ardenne, FRANCE MaxEnt 2014 - 25/09/14 Ph. Regnault (LMR-URCA) GOF tests via φ -entropy differences MaxEnt 2014 - 25/09/14 1 / 21

  2. Introduction Vasicek entropy-based normality test Paradigm of GOF test via entropy differences Maximizing ( h , φ ) -entropies under moment constraints Maximum φ -entropy distributions Scale-invariant entropies A Pythagorean equality for Bregman divergence Parametric models of MaxEnt distributions... ... for Shannon entropy ... for Tsallis entropy ... for Burg entropy Goodness-of-fit tests for... ... an exponential family ... an q -exponential family Ph. Regnault (LMR-URCA) GOF tests via φ -entropy differences MaxEnt 2014 - 25/09/14 2 / 21

  3. Introduction Vasicek entropy-based normality test Vasicek entropy-based normality test Vasicek (1976) introduced a goodness-of-fit procedure for testing the normality of uncategorical data based on the maximum entropy property N ( m , σ ) = Argmax p ∈P m ,σ S ( p ) , with ◮ N ( m , σ ) , the Gaussian distribution with mean m and variance σ 2 ; � ◮ S ( p ) = − p ( x ) log p ( x ) dx , Shannon entropy of p ; ◮ P m ,σ the set of p.d.f. with mean m and variance σ 2 . Ph. Regnault (LMR-URCA) GOF tests via φ -entropy differences MaxEnt 2014 - 25/09/14 3 / 21

  4. Introduction Vasicek entropy-based normality test Vasicek entropy-based normality test Vasicek (1976) introduced a goodness-of-fit procedure for testing the normality of uncategorical data based on the maximum entropy property N ( m , σ ) = Argmax p ∈P m ,σ S ( p ) . Precisely, from an n -sample ( X 1 , . . . , X n ) drawn according to the p.d.f. p with finite variance , for testing H 0 : p ∈ M = {N ( m , σ ) , m ∈ R , σ > 0 } H 1 : p �∈ M , against the Vasicek test statistics is � � � S ( p ) n − S ( N ( � T n = exp m n , � σ n )) , � n � � n S ( p ) n = 1 where � 2 m ( X ( i + m ) − X ( i − m ) ) log is a consistent estimator of n i = 1 S ( p ) . Ph. Regnault (LMR-URCA) GOF tests via φ -entropy differences MaxEnt 2014 - 25/09/14 3 / 21

  5. Introduction Paradigm of GOF test via entropy differences Paradigm of GOF test via entropy differences The main theoretical ingredients of Vasicek GOF test are : ◮ Maximum entropy property : the pdf in the null-hypothesis model M maximizes Shannon entropy under moment constraints ; ◮ Pythagorean equality : for any p ∈ P m ,σ , we have K ( p |N m ,σ ) = S ( N m ,σ ) − S ( p ); ◮ Estimation of Shannon entropy. Ph. Regnault (LMR-URCA) GOF tests via φ -entropy differences MaxEnt 2014 - 25/09/14 4 / 21

  6. Introduction Paradigm of GOF test via entropy differences Paradigm of GOF test via entropy differences The main theoretical ingredients of Vasicek GOF test are : ◮ Maximum entropy property : the pdf in the null-hypothesis model M maximizes Shannon entropy under moment constraints ; ◮ Pythagorean equality : for any p ∈ P m ,σ , we have K ( p |N m ,σ ) = S ( N m ,σ ) − S ( p ); ◮ Estimation of Shannon entropy. Numerous authors adapted Vasicek’s procedure ◮ to various parametric models of maximum entropy distributions , where entropy stands for Shannon (overwhelming majority) or Rényi entropies ; ◮ introducing other estimators for the entropy (of both the null-hypothesis distribution and actual distribution). Ph. Regnault (LMR-URCA) GOF tests via φ -entropy differences MaxEnt 2014 - 25/09/14 4 / 21

  7. Introduction Paradigm of GOF test via entropy differences Extending the theoretical background Parametric models for which Vasicek’s procedure-type can be developed by means of Shannon entropy maximization are well identified : exponential families ; see Lequesne’s PhD thesis. We investigate here the (informational geometric) shape and properties of parametric models for which entropy-based GOF tests may be developed, through the generalization of ◮ Maximum entropy property for φ -entropy functionals ; ◮ Pythagorean property for Bregman divergence associated to φ -entropy functionals ; ◮ φ -entropy estimation procedure adapted to the involved parametric models. Ph. Regnault (LMR-URCA) GOF tests via φ -entropy differences MaxEnt 2014 - 25/09/14 5 / 21

  8. Maximizing ( h , φ ) -entropies under moment constraints Maximum φ -entropy distributions ( h , φ ) -entropies The ( h , φ ) -entropy of a pdf p with support S is S h ,φ ( p ) := h ( S φ ( p )) , where � S φ ( p ) = − φ ( p ( x )) dx , S with ◮ φ : R + → R a twice continuously differentiable convex function ; ◮ h : R → R a real function. ( h , φ ) – entropy h ( y ) φ ( x ) Shannon y x log x Ferreri y ( 1 + rx ) log ( 1 + rx ) / r Burg y − log x Itakura-Saito y x − log x + 1 ± ( q − 1 ) − 1 ( y − 1 ) Tsallis ∓ x q , q > 0 , q � = 1 ± ( 1 − q ) − 1 log y Rényi ∓ x q , q > 0 , q � = 1 L 2 -norm x 2 y ( 1 − 2 1 − r ) − 1 ( x r − x ) Havrda and Charvat y 1 − ( 1 + 1 / r ) x + x 1 + r / r y Basu-Harris-Hjort-Jones Ph. Regnault (LMR-URCA) GOF tests via φ -entropy differences MaxEnt 2014 - 25/09/14 6 / 21

  9. Maximizing ( h , φ ) -entropies under moment constraints Maximum φ -entropy distributions Maximum φ -entropy distributions For increasing functions h , maximizing S h ,φ ( p ) amounts to maximizing S φ ( p ) , which is solved by : Theorem – Girardin (1997) Let M 0 = 1 , M 1 , . . . , M J linearly independent measurable functions defined on an interval S . Let m = ( 1 , m 1 , . . . , m J ) ∈ R J + 1 and p 0 ∈ P ( m , M ) , where P ( m , M ) = { p : E p ( M j ) = m j , j ∈ { 0 , . . ., J }} . If there exists (a unique) λ = ( λ 0 , . . . , λ J ) ∈ R J + 1 such that � J φ ′ ( p 0 ) = λ j M j , j = 0 then S φ ( p 0 ) ≥ S φ ( p ) , p ∈ P ( m , M ) . The converse holds if S is compact. Ph. Regnault (LMR-URCA) GOF tests via φ -entropy differences MaxEnt 2014 - 25/09/14 7 / 21

  10. Maximizing ( h , φ ) -entropies under moment constraints Maximum φ -entropy distributions Parametric models as families of MaxEnt distributions Given a parametric family M = { p ( . ; θ ) , θ ∈ Θ ⊆ R d } of distributions supported by S , we look for ◮ φ a convex function from R + to R , ◮ M 1 , . . . , M J measurable functions from S to R with M 0 = 1 , M 1 , . . . , M J linearly independent, such that for any θ , a unique λ ∈ R J + 1 exists satisfying   � J   . p ( . ; θ ) = φ ′− 1 λ j M j j = 0 Fortunately, requiring the entropy functionals to satisfy some natural properties allows the search to be drastically restricted. Ph. Regnault (LMR-URCA) GOF tests via φ -entropy differences MaxEnt 2014 - 25/09/14 8 / 21

  11. Maximizing ( h , φ ) -entropies under moment constraints Scale-invariant entropies Scale-invariant entropies Definitions ◮ An entropy functional S is said to be scaled-invariant if functions a and b exist, with a > 0 non-increasing such that S ( µ p µ ) = a ( µ ) S ( p ) + b ( µ ) for all µ ∈ R , where p µ ( x ) = p ( µ x ) . ◮ Two entropy functionals S and � S are said to be equivalent for maximization if � S ( p ) > � S ( p ) > S ( q ) S ( q ) . iff Ph. Regnault (LMR-URCA) GOF tests via φ -entropy differences MaxEnt 2014 - 25/09/14 9 / 21

  12. Maximizing ( h , φ ) -entropies under moment constraints Scale-invariant entropies Scale-invariant entropies Definitions ◮ An entropy functional S is said to be scaled-invariant if functions a and b exist, with a > 0 non-increasing such that S ( µ p µ ) = a ( µ ) S ( p ) + b ( µ ) for all µ ∈ R , where p µ ( x ) = p ( µ x ) . ◮ Two entropy functionals S and � S are said to be equivalent for maximization if � S ( p ) > � S ( p ) > S ( q ) S ( q ) . iff Theorem – Kosheleva (1998) If an entropy functional is scale-invariant, then it is equivalent for maximization to one of the functionals � � � 1 − p ( x ) log p ( x ) dx , p ( x ) q dx , log p ( x ) . 1 − q S S S Ph. Regnault (LMR-URCA) GOF tests via φ -entropy differences MaxEnt 2014 - 25/09/14 9 / 21

  13. Maximizing ( h , φ ) -entropies under moment constraints A Pythagorean equality for Bregman divergence A Pythagorean equality for Bregman divergence The Bregman divergence (or distance) D φ ( p | q ) associated to the φ -entropy of a distribution p with respect to another q with same support S is � φ ′ ( q ( x ))[ p ( x ) − q ( x )] dx . D φ ( p | q ) = S φ ( q ) − S φ ( p ) − S Entropy Associated Bregman divergence � p ( x ) log p ( x ) K ( p | q ) = Shannon q ( x ) dx , � � S � q q ( x ) q − 1 + p ( x ) q − 1 � T q ( p | q ) = ( 1 + q ) q ( x ) q dx − Tsallis p ( x ) dx , � � p ( x ) � S S q ( x ) − log p ( x ) Burg B ( p | q ) = q ( x ) − 1 . S Proposition Let p 0 ∈ P ( m , M ) satisfy φ ′ ( p 0 ) = � J j = 0 λ j M j for some λ ∈ R J + 1 . Then D φ ( p | p 0 ) = S φ ( p 0 ) − S φ ( p ) , p ∈ P ( m , M ) . Ph. Regnault (LMR-URCA) GOF tests via φ -entropy differences MaxEnt 2014 - 25/09/14 10 / 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend