observable gravitational waves from axion like particles
play

Observable Gravitational Waves from Axion-Like Particles Bhupal Dev - PowerPoint PPT Presentation

Observable Gravitational Waves from Axion-Like Particles Bhupal Dev Washington University in St. Louis BD, F. Ferrer, Y. Zhang and Y. C. Zhang, arXiv:1905.00891 [hep-ph]. PHENO 2019 University of Pittsburgh May 6, 2019 Outline Introduction


  1. Observable Gravitational Waves from Axion-Like Particles Bhupal Dev Washington University in St. Louis BD, F. Ferrer, Y. Zhang and Y. C. Zhang, arXiv:1905.00891 [hep-ph]. PHENO 2019 University of Pittsburgh May 6, 2019

  2. Outline Introduction to ALP Scalar Potential Gravitational Wave Spectrum Comparison with Other Constraints Conclusion 1

  3. Axion-Like Particle (ALP) Light SM-singlet pseudoscalar. Pseudo-Nambu-Goldstone boson in theories with global U (1) symmetry breaking. Originally introduced to solve the strong CP problem . [Peccei, Quinn (PRL ’77)] Could also play important role in addressing other open issues of the SM, such as hierarchy problem [Graham, Kaplan, Rajendran (PRL ’15)] , inflation [Freese, Frieman, Olinto (PRL ’90)] , dark matter [Preskill, Wise, Wilczek (PLB ’83); Abbott, Sikivie (PLB ’83); Dine, Fischler (PLB ’83)] , dark energy [Kim, Nilles (JCAP ’09)] , baryogenesis [De Simone, Kobayashi, Liberati (PRL ’17)] . Could provide a common framework to simultaneously address many of these issues. [Ballesteros, Redondo, Ringwald, Tamarit (PRL ’17); Ema, Hamaguchi, Moroi, Nakayama (JHEP ’17); Gupta, Reiness, Spannowsky ’19] 2

  4. A Simple ALP Model ALP couplings to SM is suppressed by inverse powers of the U (1) -symmetry breaking scale f a . Can be identified as the VEV of a SM-singlet complex scalar field Φ . The ALP field is the massless mode of the angular part of Φ : 1 [ f a + φ ( x )] e ia ( x ) /f a . Φ( x ) = √ 2 Explicit low-energy U (1) -breaking effects can induce a small mass for a ( x ) . 3

  5. A Simple ALP Model ALP couplings to SM is suppressed by inverse powers of the U (1) -symmetry breaking scale f a . Can be identified as the VEV of a SM-singlet complex scalar field Φ . The ALP field is the massless mode of the angular part of Φ : 1 [ f a + φ ( x )] e ia ( x ) /f a . Φ( x ) = √ 2 Explicit low-energy U (1) -breaking effects can induce a small mass for a ( x ) . Key point: The spontaneous U (1) -symmetry breaking at the f a -scale could induce a strongly first-order phase transition, if Φ has a non-zero coupling to the SM Higgs doublet field. Gives rise to stochastic gravitational wave signals potentially observable in current and future GW detectors. [BD, Mazumdar (PRD ’16)] 3

  6. Scalar Potential V ( φ, T ) = V 0 ( φ ) + V CW ( φ ) + V T ( φ, T ) , 4

  7. Scalar Potential V ( φ, T ) = V 0 ( φ ) + V CW ( φ ) + V T ( φ, T ) , � 2 | Φ | 2 − 1 Tree-level: V 0 = − µ 2 | H | 2 + λ | H | 4 + κ | Φ | 2 | H | 2 + λ a � 2 f 2 . a = λ a � 2 + � κ 2 φ 2 − µ 2 � � 1 2 h 2 + 1 φ 2 − f 2 � 2 G 2 � 0 + G + G − a 4 � 2 � 1 2 h 2 + 1 2 G 2 + λ 0 + G + G − . 4

  8. Scalar Potential V ( φ, T ) = V 0 ( φ ) + V CW ( φ ) + V T ( φ, T ) , � 2 | Φ | 2 − 1 Tree-level: V 0 = − µ 2 | H | 2 + λ | H | 4 + κ | Φ | 2 | H | 2 + λ a � 2 f 2 . a = λ a � 2 + � κ 2 φ 2 − µ 2 � � 1 2 h 2 + 1 φ 2 − f 2 � 2 G 2 � 0 + G + G − a 4 � 2 � 1 2 h 2 + 1 2 G 2 + λ 0 + G + G − . ( − 1) F n i m 4 � log m 2 � i ( φ ) i ( φ ) � One-loop: V CW ( φ ) = − C i . 64 π 2 Λ 2 i ( − 1) F n i T 4 � m 2 � i ( φ ) � Finite-temperature: V T ( φ, T ) = 2 π 2 J B/F , T 2 i 4

  9. Scalar Potential V ( φ, T ) = V 0 ( φ ) + V CW ( φ ) + V T ( φ, T ) , � 2 | Φ | 2 − 1 Tree-level: V 0 = − µ 2 | H | 2 + λ | H | 4 + κ | Φ | 2 | H | 2 + λ a � 2 f 2 . a = λ a � 2 + � κ 2 φ 2 − µ 2 � � 1 2 h 2 + 1 φ 2 − f 2 � 2 G 2 � 0 + G + G − a 4 � 2 � 1 2 h 2 + 1 2 G 2 + λ 0 + G + G − . ( − 1) F n i m 4 � log m 2 � i ( φ ) i ( φ ) � One-loop: V CW ( φ ) = − C i . 64 π 2 Λ 2 i ( − 1) F n i T 4 � m 2 � i ( φ ) � Finite-temperature: V T ( φ, T ) = 2 π 2 J B/F , T 2 i Temperature-dependent mass terms: 1 T 2 , 9 g 2 2 + 3 g 2 1 + 12 y 2 � t + 24 λ + 4 κ � Π h ( T ) = Π G 0 , ± ( T ) = 48 1 3 ( κ + 2 λ a ) T 2 . Π φ ( T ) = [Dolan, Jackiw (PRD ’74); Arnold, Espinosa (PRD ’93); Curtin, Meade, Ramani (EPJC ’18)] 4

  10. First-order Phase Transition 5

  11. First-order Phase Transition 5

  12. Gravitational Wave Production h 2 Ω GW = h 2 Ω φ + h 2 Ω SW + h 2 Ω MHD . [Kosowsky, Turner, Watkins (PRL ’92); Kamionkowski, Kosowsky, Turner (PRD ’94); Caprini, Durrer, Servant (PRD ’08); Huber, Konstandin (JCAP ’08); Hindmarsh, Huber, Rummukainen, Weir (PRL ’14); Ellis, Lewicki, No ’18] 6

  13. Gravitational Wave Production h 2 Ω GW = h 2 Ω φ + h 2 Ω SW + h 2 Ω MHD . [Kosowsky, Turner, Watkins (PRL ’92); Kamionkowski, Kosowsky, Turner (PRD ’94); Caprini, Durrer, Servant (PRD ’08); Huber, Konstandin (JCAP ’08); Hindmarsh, Huber, Rummukainen, Weir (PRL ’14); Ellis, Lewicki, No ’18] Depends on two important parameters: rad = g ∗ π 2 T 4 α = ρ vac Vacuum energy density: with ρ ∗ 30 . ∗ ρ ∗ rad 6

  14. Gravitational Wave Production h 2 Ω GW = h 2 Ω φ + h 2 Ω SW + h 2 Ω MHD . [Kosowsky, Turner, Watkins (PRL ’92); Kamionkowski, Kosowsky, Turner (PRD ’94); Caprini, Durrer, Servant (PRD ’08); Huber, Konstandin (JCAP ’08); Hindmarsh, Huber, Rummukainen, Weir (PRL ’14); Ellis, Lewicki, No ’18] Depends on two important parameters: rad = g ∗ π 2 T 4 α = ρ vac Vacuum energy density: with ρ ∗ 30 . ∗ ρ ∗ rad � � d 2 S E ( T ) (Inverse) Bubble nucleation rate: � β/H ∗ = T . � dT 2 � T = T ∗ 6

  15. Gravitational Wave Production h 2 Ω GW = h 2 Ω φ + h 2 Ω SW + h 2 Ω MHD . [Kosowsky, Turner, Watkins (PRL ’92); Kamionkowski, Kosowsky, Turner (PRD ’94); Caprini, Durrer, Servant (PRD ’08); Huber, Konstandin (JCAP ’08); Hindmarsh, Huber, Rummukainen, Weir (PRL ’14); Ellis, Lewicki, No ’18] Depends on two important parameters: rad = g ∗ π 2 T 4 α = ρ vac Vacuum energy density: with ρ ∗ 30 . ∗ ρ ∗ rad � � d 2 S E ( T ) (Inverse) Bubble nucleation rate: � β/H ∗ = T . � dT 2 � T = T ∗ 6

  16. Gravitational Wave Production h 2 Ω GW = h 2 Ω φ + h 2 Ω SW + h 2 Ω MHD . [Kosowsky, Turner, Watkins (PRL ’92); Kamionkowski, Kosowsky, Turner (PRD ’94); Caprini, Durrer, Servant (PRD ’08); Huber, Konstandin (JCAP ’08); Hindmarsh, Huber, Rummukainen, Weir (PRL ’14); Ellis, Lewicki, No ’18] Depends on two important parameters: rad = g ∗ π 2 T 4 α = ρ vac Vacuum energy density: with ρ ∗ 30 . ∗ ρ ∗ rad � � d 2 S E ( T ) (Inverse) Bubble nucleation rate: � β/H ∗ = T . � dT 2 � T = T ∗ � β � β � β � − 2 � − 1 � − 1 h 2 Ω φ ∝ , h 2 Ω SW ∝ , h 2 Ω MHD ∝ . H ∗ H ∗ H ∗ 6

  17. Gravitational Wave Spectrum 7

  18. Gravitational Wave Spectrum 7

  19. Gravitational Wave Spectrum 7

  20. GW Sensitivity 8

  21. GW Sensitivity 8

  22. GW Sensitivity 8

  23. GW Sensitivity 8

  24. GW Sensitivity Independent of the ALP mass. Provides a new probe of f a , complementary to other laboratory, cosmological and astrophysical probes, which depend on both f a and m a . 9

  25. GW Complementarity beam dump 10 - 6 LSW SN LISA g a γγ [ GeV - 1 ] Sun 10 - 8 BBO helioscopes HB stars 10 - 10 aLIGO + γ - rays telescopes haloscopes x ion CMB BBN EBL 10 - 12 X - rays DFSZ KSVZ 10 - 8 10 - 5 10 4 10 7 0.01 10 m a [ eV ] 10

  26. Higgs Trilinear Coupling 14 perturbative limit 12 ] % 0 3 [ C H L 10 - ILC [ 13 %] L H FCC - hh [ 5 %] κ 8 6 4 2 10 3.0 10 3.1 10 3.2 10 3.3 10 3.4 10 3.5 10 3.6 10 3.7 f a [ GeV ] + κ 3 v 3 m 2 λ 3 ≃ λ SM EW with λ SM h , = 2 v EW . 3 3 24 π 2 m 2 φ Current LHC limit: − 9 � λ 3 /λ SM � 15 . 3 11

  27. Conclusion Considered generic ALP scenarios with the VEV of a complex scalar field Φ breaking the global U (1) symmetry. Gives rise to strong first-order phase transition and stochastic gravitational waves for a sizable coupling to the SM Higgs. Current and future GW experiments can probe a broad range of ALP parameter space with 10 3 GeV � f a � 10 8 GeV . Independent of the ALP mass. Complementary to various laboratory, cosmological and astrophysical constraints on the ALP . 12

  28. Conclusion Considered generic ALP scenarios with the VEV of a complex scalar field Φ breaking the global U (1) symmetry. Gives rise to strong first-order phase transition and stochastic gravitational waves for a sizable coupling to the SM Higgs. Current and future GW experiments can probe a broad range of ALP parameter space with 10 3 GeV � f a � 10 8 GeV . Independent of the ALP mass. Complementary to various laboratory, cosmological and astrophysical constraints on the ALP . THANK YOU. 12

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend