probing axion like particles via cmb polarization
play

Probing Axion-like Particles via CMB Polarization Collaborators: - PowerPoint PPT Presentation

1 Probing Axion-like Particles via CMB Polarization Collaborators: Tomohiro Fujita, Yuto Minami, Kai Murai, arxiv:2008.02473 Speaker: Hiromasa Nakatsuka ICRR, The University of Tokyo 2 nd year PhD student PPP,2020-09-03 2 Axion n QCD axion


  1. 1 Probing Axion-like Particles via CMB Polarization Collaborators: Tomohiro Fujita, Yuto Minami, Kai Murai, arxiv:2008.02473 Speaker: Hiromasa Nakatsuka ICRR, The University of Tokyo 2 nd year PhD student PPP,2020-09-03

  2. 2 Axion n QCD axion • Strong CP problem: C. A. Baker, et al. (2006) , by the electric dipole moment of neutron • One of solutions is QCD axion: n Axion-like particles by String Axiverse A. Arvanitaki, et al. (2009) “ String theory suggests the simultaneous presence of many ultralight axions ” • Axions have mass nonperturbatively, which is exponentially suppressed: " ∝ 𝜈 ! 𝑓 !& !"#$ 𝑛 % 𝑔 " David J. E. Marsh (2015) • Axion as Dark Matter: 10 !"" eV ≲ 𝑛 • Axion as Dark Energy: 𝑛 ≲ 𝐼 # ∼ 10 !$$ eV

  3. 3 Axion-like Particles n Axion-Photon coupling , 𝜚 :axion(ALP) • Axion-photon conversion By background B field: ('()) 𝐵 % 𝜚 𝐵 % • Rotation of polarization angle Observed polarization Polarization of Initial photon 𝜚 # 𝜚 $ ! ! ⃗ 𝛽 = " Δ𝜚 = " 𝜚 # − 𝜚 $ 𝐵 𝛽 ⃗ 𝐵 Δ𝜚 D.Harari&P.Sikivie (1992)

  4. 4 Axion-photon conversion n Axion Helioscope (e.g., CAST, CAST Collaboration (2005) ) solar axion flux 𝑪 Magnet coil X-ray x-ray detector n Axion Dark Matter eXperiment (ADMX) for Axion DM S.J. Asztalos, et al. (2009) • The microwave cavity for resonant conversion n X-ray space telescope: Chandra observatory M. Berg, et al. (2016) AGN of the Perseus cluster n o i x a magnetic field X-ray flux 𝑪 x-ray space telescope X-ray flux in galaxy cluster (Chandra)

  5. 5 Polarization rotation n Ground-based experiment: Laser technique • The background axion DM rotates the polarization angle of laser. • Laser cavity can detect the small rotation angle. H. Liu, et al. (2018), I. Obata, et al. (2018), K. Nagano, et al. (2019) n Astronomical source (e.g. proto-planetary disc) J.Hashimoto, et al. (2011), • Flattened gaseous object surrounding a young star • The background axion DM rotates the direction of scattering polarization. J. Hashimoto, et al. (2011), T. Fujita, et al. (2018), S. Chigusa et al. (2019) n Cosmological source: CMB S. M. Carroll (1998), A. Lue, et al. (1999), M. A. Fedderke, et al. (2019), G. Sigl&P. Trivedi (2018) • and This work

  6. 6 The constraints of axion-photon coupling This work M.Berg, et.al. (2016)

  7. 7 Cosmic Birefringence n CMB polarization E-mode B-mode Axion induces Parity Even Parity Odd EB-correlation n Cosmic Birefringence S.M.Carroll (1998), A. Lue, et.al. (1999) ● Last Scattering Surface(LSS): 𝑢 #$$ ∼ 3.8×10 % yr ● Observer: 𝑢 & ∼ 13.8×10 ' yr uncorrelated E&B-mode correlated E&B-mode 𝜚 ① anisotropic rotation 𝜚 345 (direction dependent) . 𝜚 677 𝑜 ≡ − ! . 𝛽 , " 𝜀𝜚 #$$ (, 𝑜) 𝜚 345 ② isotropic rotation 𝛽 ≡ ! 𝑦 " ( 2 𝜚 %&' − 2 𝜀𝜚 #$$ (, 𝑜) 𝑦 2 𝜚 #$$ + 𝜀𝜚 %&' ) 𝜀𝜚 %&'

  8. 8 Field Dynamics ・ >𝜚 #$$ = 2 𝜚 𝑢 #$$ + 𝜀𝜚 #$$ 𝑢 #$$ , , 𝑜 n Birefringence by Δ ) 𝜚, 𝜀𝜚 456 and 𝜀𝜚 788 𝜚 %&' = 2 𝜚 𝑢 ( + 𝜀𝜚 %&' 𝑢 ( , 𝑦 = 0 • Potential term : V 𝜚 = 8 " 𝑛 " 𝜚 " ・ 𝐼 ( : (current Hubble parameter) • Background motion : Δ 2 𝜚 ≡ 2 𝜚 𝑢 ( − 2 𝜚 𝑢 #$$ , constant (𝑛 < 𝐼 𝑢 ) 9 ・ Dynamics : 𝜚 𝑢 ∝ < 𝑏 𝑢 ( ! " sin 𝑛𝑢 𝐼 𝑢 < 𝑛 */" , Ω ! ∼ # 0.7 m ≲ 𝐼 " ・ Amplitude : | 2 𝜚| ∝ Ω ) R.Hlozek, et.al.(2015) 0.01 (𝐼 " ≲ m ≲ 10 #$% eV) • Perturbation: 𝜀𝜚 )*+ & 𝜀𝜚 #$$ , 𝑠 : tensor to scalar ratio, we use 𝑠 = 0.06 ・ 𝑜 ≡ − K ① anisotropic rotation (direction dependent ) : 𝛽 1 " 𝜀𝜚 677 (1 𝑜) 𝛽 ≡ K " (Δ . ② isotropic rotation : . 𝜚 + 𝜀𝜚 345 )

  9. 9 Field Dynamics n Fluctuation at observer: 𝜀𝜚 456 The Fourier mode O 𝜚 , • 𝜚 677 𝜚 345 (- , 𝜚 #$$ ≃ 𝜚 )*+ For 𝑙 < 𝑒 #$$ (- , 𝜚 #$$ ≠ 𝜚 )*+ For 𝑙 > 𝑒 #$$ 𝑒 #$$ , • #( #( 𝑒 &'' 𝑒 &'' n Damping effect by the width of LSS ● Last Scattering Surface(LSS): 𝑢 #$$ ∼ 3.8×10 % yr ● Observer: 𝑢 & ∼ 13.8×10 ' yr present < LSS > For 𝑛 > 10 (". eV, 𝜚 oscillates at LSS: • , visibility function:

  10. 10 Sensitivity n Current sensitivity from Planck, SPTpol & ACTPol N. Aghanim, et al. (2016), F. Bianchini, et al. (2020), T. Namikawa, et al. (2020) 𝑜 ≡ − ! ① anisotropic rotation (direction dependent ) : 𝛽 , " 𝜀𝜚 #$$ (, 𝑜) -- ≡ 1∗ , * ∗ ",.* ∑ / 𝑏 - ,/ 𝑏 - ,/ 𝐷 , , 𝑏 - ,1 ≡ ∫ dΩ 𝛽 , 𝑜 𝑍 𝑜 , • For flat power spectrum, ** 𝐵 - ≡ , *., 2 ) "3 • SPTpol & ACTPol 2020: 𝐵 - < 8.3×10 45 deg " (68%CL) 𝛽 ≡ ! ② isotropic rotation : 2 " (Δ 2 𝜚 + 𝜀𝜚 678 ) • Planck2016: 2 𝛽 < 0.6 ° (68%CL)

  11. 11 Sensitivity 𝐼 ( : (current Hubble parameter) n Current sensitivity from Planck & SPTpol N. Aghanim et al. 2016, F. Bianchini et al.2020, T. Namikawa et al. 2020 Damp by l Red line by 𝜀𝜚 788 oscillation For 10 !"U eV < 𝑛, 𝜚 oscillates during LSS, and the averaged rotation angle damps. l Purple line by Δ ) 𝜚 For 𝑛 < 𝐼 # , . 𝜚 does not roll down the potential, and Δ . 𝜚 ∝ 𝑛/𝐼 # oscillation during LSS l Blue line by 𝜀𝜚 456 not roll down For 𝐼 # < 𝑛, 𝜀𝜚 345 starts oscillating and damps.

  12. 12 Sensitivity 𝐼 ( : (current Hubble parameter) n Current sensitivity from Planck & SPTpol • Even if no BG axion Ω X → 0 , we ubiquitously have 𝜀𝜚 788 & 𝜀𝜚 456 from inflation. ∝ 𝑠 (-/" • 𝜀𝜚 677 :anisotropic birefringence • 𝜀𝜚 345 :isotropic birefringence (-/" ∝ Ω /

  13. 13 Future sensitivity Table in our paper, arxiv:2008.02473 • Here, 𝑠 = 10 45 in the reach of LiteBIRD

  14. 14 Discussion ! What if we detect ... ? 𝛽 " 𝑜 ≡ − " 𝜀𝜚 #$$ (" 𝑜) ! " (Δ * 𝛽 ≡ * 𝜚 + 𝜀𝜚 %&' ) ① anisotropic birefringence ② Only isotropic (no anisotropic) birefringence ③ Only anisotropic (no isotropic) birefringence

  15. 15 Discussion ! What if we detect ... ? 𝛽 " 𝑜 ≡ − " 𝜀𝜚 #$$ (" 𝑜) ① anisotropic birefringence by 𝜀𝜚 #$$ ∝ 9 + ! " (Δ * 𝛽 ≡ * 𝜚 + 𝜀𝜚 %&' ) "3 • we can fix “ 𝑕 " ×𝑠 ”, " "#$ Z ! ! d [.\×]^ %& _'` ' = a.a×]^ %() b'c %( ]^ %& Observable upper bound (e.g. Chandra) 𝑕 < 𝑕 :;< &'( X % 𝑠 > 5×10 !W ⇒ Y×8# )* Z[\ + ü CMB experiments can investigate 𝑠 from below by Birefringence! (and from above by the primordial GW )

  16. 16 Discussion ! What if we detect ... ? 𝛽 " 𝑜 ≡ − " 𝜀𝜚 #$$ (" 𝑜) ② Only isotropic birefringence by 𝜀𝜚 456 or Δ ) 𝜚 ! " (Δ * 𝛽 ≡ * 𝜚 + 𝜀𝜚 %&' ) • Non-detection of 𝜀𝜚 677 means Δ . 𝜚 , not 𝜀𝜚 345 • 𝑕 has upper bound, then 0.3° < 𝑛 | . 𝛽| | . 𝛽| 10 !U < 10 U 𝐼 # 0.3° ü We can investigate the mass of axion DE, including very small Equation of State 𝑥 !

  17. 17 Discussion What if we detect ... ? ! 𝛽 " 𝑜 ≡ − " 𝜀𝜚 #$$ (" 𝑜) ③ Only anisotropic birefringence ! " (Δ * 𝛽 ≡ * 𝜚 + 𝜀𝜚 %&' ) • Non-detection of 𝜀𝜚 345 means 1 ≲ 𝑛 𝐼 # • Non-detection of Δ . 𝜚 means 4* " =>? 𝛽 2 𝐵 - 𝑠 Ω ) ℎ " ≲ 2×10 4*5 4×10 45 deg " 0.05° 0.06 ü We can put a stringent constraint on the energy fraction of the axion! Ω / ∼ 0.01

  18. Conclusion • Future CMB experiments investigates the broad range of axion-photon coupling, including • dark energy axion • axion with tiny energy fraction • Detection of birefringence provides valuable information; • through anisotropic birefringence, we can search small-scale inflation with 𝑠 > 5×10 !W . • through isotropic rotation, we can search tiny energy fraction of axion with Ω % ℎ " ≲ 2×10 !8$ . Detailed calculations in arxiv:2008.02473

  19. 19 Backup

  20. 20 About CMB observation 𝐷 12,4 = tan 4𝛽 5 + sin 4𝛽 𝐷 11,4 − 𝐷 22,4 𝐷 11,672 − 𝐷 22,672 2 2cos(4𝛽 5 ) 𝛽 5 : rotation of polarization sensitive detector 𝛽 : cosmic birefringence Y.Minami, et.al.(2019)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend