o
play

O . MODELING AND SCIENTIFIC COMPUTING . MODELLISTICA E CALCOLO - PowerPoint PPT Presentation

O . MODELING AND SCIENTIFIC COMPUTING . MODELLISTICA E CALCOLO SCIENTIFICO . . . M . X Multigrid algorithms for highorder Discontinuous Galerkin methods on polygonal and polyhedral meshes Paola F. Antonietti and Marco Verani


  1. O . MODELING AND SCIENTIFIC COMPUTING . MODELLISTICA E CALCOLO SCIENTIFICO . . . M . X Multigrid algorithms for high–order Discontinuous Galerkin methods on polygonal and polyhedral meshes Paola F. Antonietti and Marco Verani Politecnico di Milano MOX-Dipartimento di Matematica Joint work with: P. Houston (Nottingham), M. Sarti (PoliMi) POEMS - GEORGIA TECH, 27 th OCTOBER 2015

  2. . M O . . . X . MODELLISTICA E CALCOLO SCIENTIFICO . MODELING AND SCIENTIFIC COMPUTING . Aims AIM Design and analysis of efficient solution techniques for A h u h = F h when A h results from hp -DG approximations of: � in Ω ∈ R d , d = 2, 3 − ∆ u = f u =0 on ∂ Ω on polytopic grids. Antonietti-Verani | MOX-PoliMi Multigrid methods for hp -DG on polygons | 1 of 14

  3. . M . MODELING AND SCIENTIFIC COMPUTING . MODELLISTICA E CALCOLO SCIENTIFICO . X . . . O DG formulation DG space: V hp = { v ∈ L 2 (Ω) : v | κ ∈ P p ( κ ) ∀ κ ∈ T h } . Weak formulation: � ∀ v h ∈ V hp , A h ( u h , v h ) = fv h dx Ω with A h ( · , · ) defined as: � � � � A h ( u h , v h ) = ∇ u h · ∇ v h dx − { {∇ u h } } · � v h � ds κ F κ ∈T h F ∈F h � � � � − � u h � · { {∇ v h } } ds + σ F � u h � · � v h � ds F F F ∈F h F ∈F h with σ F = σ F ( p , κ ± , F , C ± INV , α ) ∈ L ∞ ( F ) [Cangiani, Georgoulis, Houston, 2014] Antonietti-Verani | MOX-PoliMi Multigrid methods for hp -DG on polygons | 2 of 14

  4. . M . O . . . X . MODELLISTICA E CALCOLO SCIENTIFICO . MODELING AND SCIENTIFIC COMPUTING Multigrid methods on agglomerated grids The set of (nested) partitions {T j } J j =1 is obtained by agglomeration hj , pj hj − 1 , pj − 1 hj − 2 , pj − 2 hp -DG methods on polytopic grids [Cangiani, Georgoulis, Houston, 2014] [Cangiani, Dong, Georgoulis, Houston, 2015] [A., Giani, Houston, 2013], [Bassi, Botti, Colombo, Di Pietro, Tesini, 2012] Antonietti-Verani | MOX-PoliMi Multigrid methods for hp -DG on polygons | 3 of 14

  5. . M . . . MODELLISTICA E CALCOLO SCIENTIFICO MODELING AND SCIENTIFIC COMPUTING X . . . O Multigrid methods: the idea The solution u h is approximated by a sequence of u ( k ) h , k = 0, 1, 2, . . . . u ( k ) u ( k +1) u ( k +1) = MG( J , F h , u ( k ) h , m ): h h h level J {T J , V J } • m pre-smoothing steps; level j {T j , V j } • recursive correction of the residual on level j ; m post-smoothing steps; • level 1 {T 1 , V 1 } h j h , p j h j , p j h j − 1 h , p j − 1 h j − 1 , p j − 1 h -multigrid p -multigrid hp -multigrid Antonietti-Verani | MOX-PoliMi Multigrid methods for hp -DG on polygons | 4 of 14

  6. . M . O . . . X . MODELLISTICA E CALCOLO SCIENTIFICO . MODELING AND SCIENTIFIC COMPUTING Multigrid methods: the idea The solution u h is approximated by a sequence of u ( k ) h , k = 0, 1, 2, . . . . u ( k ) u ( k +1) u ( k +1) = MG( J , F h , u ( k ) h , m ): h h h level J {T J , V J } • m pre-smoothing steps; level j {T j , V j } • recursive correction of the residual on level j ; m post-smoothing steps; • level 1 {T 1 , V 1 } Subspaces defined as V j = { v ∈ L 2 (Ω) : v | κ ∈ P p j ( κ ) ∀ κ ∈ T j } , j = 1, . . . , J , and we assume h j − 1 � h j ≤ h j − 1 , p j − 1 ≤ p j � p j − 1 . Antonietti-Verani | MOX-PoliMi Multigrid methods for hp -DG on polygons | 4 of 14

  7. . M . . MODELING AND SCIENTIFIC COMPUTING MODELLISTICA E CALCOLO SCIENTIFICO . X . . . O Multigrid methods: the j th level iteration if j = 1 then • MG( j , g , z 0 , m ) ≈ z Set MG(1, g , z 0 , m ) := A − 1 g . approximate solution of j else A j z = g , Pre-smoothing: (i=1,. . . ,m) z ( i ) = z ( i − 1) + B j ( g − A j z ( i − 1) ); obtained from the j th level Error correction: iteration with i.g. z 0 . e (0) j − 1 = 0; • A j =matrix representation of for r = 1, . . . , s do A h ( · , · ) on level j . e ( r ) j − 1 = MG( j − 1, I j − 1 ( g − A j z ( m ) ), e ( r − 1) j − 1 , m ); j end for • B j = your favorite smoother. Set z ( m +1) = z ( m ) + e ( s ) j − 1 ; Post-smoothing: (i=m+2,. . . ,2m+1) z ( i ) = z ( i − 1) + B j ( g − A j z ( i − 1) ); Set MG( j , g , z 0 , m ) := z (2 m +1) ; end if Antonietti-Verani | MOX-PoliMi Multigrid methods for hp -DG on polygons | 5 of 14

  8. . M . O . . . X . MODELLISTICA E CALCOLO SCIENTIFICO . MODELING AND SCIENTIFIC COMPUTING Convergence W-cycle algorithm (standard grids) Error propagation operator ( G j = Id j − B j A j ) � E 1, m v = 0, E j , m v = G m j ((Id j − P j − 1 ) − E 2 j − 1, m P j − 1 ) G m j v , j > 1. THEOREM - [A., Sarti, Verani, SINUM, 2015] B j = Richardson smoother. It holds that p 2 j � E j , m � A j ≤ C ∀ j = 1, . . . , J . 1 + m Therefore, if m is chosen large enough ( i.e. , m ≈ O ( p 2 j )), and then u ( k ) � E j , m � A j < 1 − k →∞ u h . − − → h Proof: Multigrid framework of [Brenner & Zhao, 2005]. Antonietti-Verani | MOX-PoliMi Multigrid methods for hp -DG on polygons | 6 of 14

  9. . M . MODELING AND SCIENTIFIC COMPUTING . MODELLISTICA E CALCOLO SCIENTIFICO . X . . . O Convergence W-cycle algorithm (polytopic grids) THEOREM - [A., Houston, Sarti, Verani. Submitted.] p 2 j � E j , m � A j ≤ C P ∀ j = 1, . . . , J . 1 + m Therefore, if m is chosen large enough and then u ( k ) � E j , m � A j < 1 − k →∞ u h . − − → h C P = C P ( C INV , quality of agglomerated meshes ) • Mild geometrical assumptions on agglomerated meshes (only for the theory) • The above result holds provided the number of levels is kept limited! Antonietti-Verani | MOX-PoliMi Multigrid methods for hp -DG on polygons | 7 of 14

  10. . M . . . MODELLISTICA E CALCOLO SCIENTIFICO MODELING AND SCIENTIFIC COMPUTING X . . . O Numerical evaluation of C and C P Triangular grids Polytopic grids 1 1 0 . 8 0 . 8 ˜ C ( p j , p j − 1 ) ≈ O (1) SIPG, J = 2 SIPG, J = 3 0 . 6 LDG, J = 2 Two-level 0 . 6 LDG, J = 3 W-cycle, 3 levels 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 p p Numerical evaluation of C: Numerical evaluation of C P : h -multigrid scheme with m = 2 p 2 . h -multigrid scheme with m = 2 p 2 . Antonietti-Verani | MOX-PoliMi Multigrid methods for hp -DG on polygons | 8 of 14

  11. . M O . . . X . MODELLISTICA E CALCOLO SCIENTIFICO . MODELING AND SCIENTIFIC COMPUTING . Numerical experiments • Convergence factor � 1 N ln � r N � 2 � ρ = exp � r 0 � 2 • N iterations required to attain convergence up to a (relative) tol. of 10 − 8 . • Agglomerated grids obtained with MGridGen [Moulitsas, Karypis, 01] Antonietti-Verani | MOX-PoliMi Multigrid methods for hp -DG on polygons | 9 of 14

  12. . M O . . . X . MODELLISTICA E CALCOLO SCIENTIFICO . MODELING AND SCIENTIFIC COMPUTING . h -multigrid, p = 1 (polytopic grids) N elem = 512 N elem = 1024 N elem = 2048 N elem = 4096 W-cycle W-cycle W-cycle W-cycle TL TL TL TL 3 lvl 4 lvl 3 lvl 4 lvl 3 lvl 4 lvl 3 lvl 4 lvl m =3 133 160 167 121 191 188 140 188 192 162 198 198 m =5 95 113 113 88 121 125 99 124 128 112 131 131 m =8 72 82 81 67 86 88 74 89 91 83 94 94 N CG N CG N CG N CG iter = 445 iter = 633 iter = 946 iter = 1234 Antonietti-Verani | MOX-PoliMi Multigrid methods for hp -DG on polygons | 10 of 14

  13. . M . O . . . X . MODELLISTICA E CALCOLO SCIENTIFICO . MODELING AND SCIENTIFIC COMPUTING p -multigrid: 2D tests J = 2 J = 3 J = 4 p J = 2 0.62 - - Convergence factor as a function of J and p J ( m = 6). p J = 3 0.77 0.77 - p J = 4 0.79 0.80 0.86 p J = 5 0.83 0.82 0.87 p J = 6 0.86 0.86 0.86 J = 2 J = 3 J = 4 m = 2 0.91 0.91 0.94 Convergence factor as a function J and m ( p J = 5). m = 4 0.85 0.85 0.90 m = 10 0.78 0.77 0.80 Antonietti-Verani | MOX-PoliMi Multigrid methods for hp -DG on polygons | 11 of 14

  14. . M . O . . . X . MODELLISTICA E CALCOLO SCIENTIFICO . MODELING AND SCIENTIFIC COMPUTING h -multigrid: 3D tests (tetrahedral grids) p = 1 p = 2 p = 3 J = 2 J = 3 J = 4 J = 2 J = 3 J = 4 J = 2 J = 3 Richardson smoother m = 2 0.57 0.55 0.53 0.82 0.81 0.80 0.90 0.90 m = 4 0.71 0.71 0.69 0.91 0.90 0.90 0.95 0.95 m = 10 0.46 0.44 0.41 0.79 0.78 0.77 0.88 0.88 Gauss-Seidel smoother m = 2 0.57 0.55 0.53 0.82 0.81 0.79 0.89 0.89 m = 4 0.35 0.33 0.30 0.68 0.67 0.65 0.81 0.80 m = 10 0.13 0.15 0.12 0.43 0.41 0.40 0.61 0.60 symmetric Gauss-Seidel smoother m = 2 0.35 0.33 0.30 0.68 0.67 0.65 0.81 0.80 m = 4 0.17 0.19 0.16 0.50 0.48 0.46 0.67 0.66 m = 10 0.05 0.08 0.07 0.22 0.22 0.20 0.41 0.39 Antonietti-Verani | MOX-PoliMi Multigrid methods for hp -DG on polygons | 12 of 14

  15. . M . O . . . X . MODELLISTICA E CALCOLO SCIENTIFICO . MODELING AND SCIENTIFIC COMPUTING hp -multigrid (polytopic grids) p = 2 p = 3 p = 4 p = 5 W-cycle W-cycle W-cycle TL TL TL TL 3 lvl 3 lvl 4 lvl 3 lvl 4 lvl m = 12 334 631 1528 860 1028 1051 890 1197 1418 m = 14 292 550 607 748 889 908 772 1033 1220 N CG N CG N CG N CG iter = 1701 iter = 2809 iter = 4574 iter = 6796 Antonietti-Verani | MOX-PoliMi Multigrid methods for hp -DG on polygons | 13 of 14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend