null space gradient flows for shape optimization of
play

Null Space Gradient Flows for Shape Optimization of Multiphysics - PowerPoint PPT Presentation

Null Space Gradient Flows for Shape Optimization of Multiphysics Systems Florian Feppon Gr egoire Allaire, Charles Dapogny Julien Cortial, Felipe Bordeu New trends in PDE constrained optimization RICAM (Linz) October 15th, 2019 Outline


  1. Null Space Gradient Flows for Shape Optimization of Multiphysics Systems Florian Feppon Gr´ egoire Allaire, Charles Dapogny Julien Cortial, Felipe Bordeu New trends in PDE constrained optimization RICAM (Linz) – October 15th, 2019

  2. Outline 1. Shape derivatives for a weakly coupled multiphysics system 2. Null space gradient flows for constrained optimization 3. Numerical illustrations on 2-d and 3-d test cases

  3. Outline 1. Shape derivatives for a weakly coupled multiphysics system 2. Null space gradient flows for constrained optimization 3. Numerical illustrations on 2-d and 3-d test cases

  4. Outline 1. Shape derivatives for a weakly coupled multiphysics system 2. Null space gradient flows for constrained optimization 3. Numerical illustrations on 2-d and 3-d test cases

  5. Outline 1. Shape derivatives for a weakly coupled multiphysics system 2. Null space gradient flows for constrained optimization 3. Numerical illustrations on 2-d and 3-d test cases

  6. ✈ ✉ ✈ Multiphysics shape optimization We are interested in multiphysics systems featuring ◮ fluids: velocity–pressure ( ✈ , p )

  7. ✉ ✈ Multiphysics shape optimization We are interested in multiphysics systems featuring ◮ fluids: velocity–pressure ( ✈ , p ) ◮ thermal exchanges: temperature field T , convected by ✈

  8. Multiphysics shape optimization We are interested in multiphysics systems featuring ◮ fluids: velocity–pressure ( ✈ , p ) ◮ thermal exchanges: temperature field T , convected by ✈ ◮ mechanical structures: displacement ✉ , subjected to fluid-structure interaction with ✈ and thermoelasticity with T .

  9. ✈ ✉ ✉ ❢ ✉ ♥ ✈ ♥ 1. Shape derivatives for a multiphysics system Proposed system Ω f ∂ Ω D v 0 f Ω s n Γ u 0 ∂ Ω D s ◮ Incompressible Navier-Stokes equations for ( ✈ , p ) in Ω f − div ( σ f ( ✈ , p )) + ρ ∇ ✈ ✈ = ❢ f in Ω f

  10. ✉ ✉ ❢ ✉ ♥ ✈ ♥ 1. Shape derivatives for a multiphysics system Proposed system Ω f ∂ Ω D v 0 f Ω s n Γ u 0 ∂ Ω D s ◮ Incompressible Navier-Stokes equations for ( ✈ , p ) in Ω f − div ( σ f ( ✈ , p )) + ρ ∇ ✈ ✈ = ❢ f in Ω f ◮ Steady-state convection-diffusion for T f and T s in Ω f and Ω s : − div ( k f ∇ T f ) + ρ ✈ · ∇ T f = Q f in Ω f − div ( k s ∇ T s ) = Q s in Ω s

  11. 1. Shape derivatives for a multiphysics system Proposed system Ω f ∂ Ω D v 0 f Ω s n Γ u 0 ∂ Ω D s ◮ Incompressible Navier-Stokes equations for ( ✈ , p ) in Ω f − div ( σ f ( ✈ , p )) + ρ ∇ ✈ ✈ = ❢ f in Ω f ◮ Steady-state convection-diffusion for T f and T s in Ω f and Ω s : − div ( k f ∇ T f ) + ρ ✈ · ∇ T f = Q f in Ω f − div ( k s ∇ T s ) = Q s in Ω s ◮ Linearized thermoelasticity with fluid-structure interaction for ✉ in Ω s : − div ( σ s ( ✉ , T s )) = ❢ s in Ω s σ s ( ✉ , T s ) · ♥ = σ f ( ✈ , p ) · ♥ on Γ .

  12. 1. Shape derivatives for a multiphysics system The method of Hadamard Ω s Ω f θ Γ θ min J (Γ) Γ Γ

  13. 1. Shape derivatives for a multiphysics system The method of Hadamard Ω s Ω f θ Γ θ min J (Γ) Γ Γ Γ θ = ( I + θ )Γ , where θ ∈ W 1 , ∞ ( D , R d ) , || θ || W 1 , ∞ ( R d , R d ) < 1 . 0

  14. 1. Shape derivatives for a multiphysics system The method of Hadamard Ω s Ω f θ Γ θ min J (Γ) Γ Γ Γ θ = ( I + θ )Γ , where θ ∈ W 1 , ∞ ( D , R d ) , || θ || W 1 , ∞ ( R d , R d ) < 1 . 0 J (Γ θ ) = J (Γ) + d J | o ( θ ) | θ → 0 d θ ( θ ) + o ( θ ) , where − − − → 0 . || θ || W 1 , ∞ ( D , R d )

  15. ✈ ✉ ❢ ✇ ✈ ✇ ♥ ✇ ✈ ♥ ♥ ✈ ✇ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ✉ r ❢ r ♥ r ✉ ♥ ♥ ✉ r ♥ ♥ Shape derivatives for a multiphysics system Shape derivative of arbitrary functionals Proposition Let J (Γ , ✉ , T , ✈ , p ) an arbitrary functional with continuous partial derivatives and ✉ (Γ) , T (Γ) , ✈ (Γ) , p (Γ) the above state variables. Then, if these are smooth enough, Γ �→ J (Γ , ✉ (Γ) , T (Γ) , ✈ (Γ) , p (Γ)) is shape differentiable and the derivative reads:

  16. Shape derivatives for a multiphysics system Shape derivative of arbitrary functionals Proposition Let J (Γ , ✉ , T , ✈ , p ) an arbitrary functional with continuous partial derivatives and ✉ (Γ) , T (Γ) , ✈ (Γ) , p (Γ) the above state variables. Then, if these are smooth enough, Γ �→ J (Γ , ✉ (Γ) , T (Γ) , ✈ (Γ) , p (Γ)) is shape differentiable and the derivative reads: � � d J (Γ θ , ✈ (Γ θ ) , p (Γ θ ) , T (Γ θ ) , ✉ (Γ θ )) ( θ ) d θ � = ∂ J ∂ θ ( θ ) + ( ❢ f · ✇ − σ f ( ✈ , p ) : ∇ ✇ + ♥ · σ f ( ✇ , q ) ∇ ✈ · ♥ + ♥ · σ f ( ✈ , p ) ∇ ✇ · ♥ )( θ · ♥ ) d s Γ � � � ∂ T s ∂ S s ∂ T f ∂ S f + k s ∇ T s · ∇ S s − k f ∇ T f · ∇ S f + Q f S f − Q s S s − 2 k s ∂ ♥ + 2 k f ( θ · ♥ ) d s ∂ ♥ ∂ ♥ ∂ ♥ Γ � + ( σ s ( ✉ , T s ) : ∇ r − ❢ s · r − ♥ · Ae ( r ) ∇ ✉ · ♥ − ♥ · σ s ( ✉ , T s ) ∇ r · ♥ ) ( θ · ♥ ) d s Γ

  17. Shape derivatives for a multiphysics system Shape derivative of arbitrary functionals Proposition Let J (Γ , ✉ , T , ✈ , p ) an arbitrary functional with continuous partial derivatives and ✉ (Γ) , T (Γ) , ✈ (Γ) , p (Γ) the above state variables. Then, if these are smooth enough, Γ �→ J (Γ , ✉ (Γ) , T (Γ) , ✈ (Γ) , p (Γ)) is shape differentiable and the derivative reads: � � d J (Γ θ , ✈ (Γ θ ) , p (Γ θ ) , T (Γ θ ) , ✉ (Γ θ )) ( θ ) d θ � = ∂ J ∂ θ ( θ ) + ( ❢ f · ✇ − σ f ( ✈ , p ) : ∇ ✇ + ♥ · σ f ( ✇ , q ) ∇ ✈ · ♥ + ♥ · σ f ( ✈ , p ) ∇ ✇ · ♥ )( θ · ♥ ) d s Γ � � � ∂ T s ∂ S s ∂ T f ∂ S f + k s ∇ T s · ∇ S s − k f ∇ T f · ∇ S f + Q f S f − Q s S s − 2 k s ∂ ♥ + 2 k f ( θ · ♥ ) d s ∂ ♥ ∂ ♥ ∂ ♥ Γ � + ( σ s ( ✉ , T s ) : ∇ r − ❢ s · r − ♥ · Ae ( r ) ∇ ✉ · ♥ − ♥ · σ s ( ✉ , T s ) ∇ r · ♥ ) ( θ · ♥ ) d s Γ J is a “transported” functional: p , ˆ ✈ ◦ ( I + θ ) − 1 , ˆ p ◦ ( I + θ ) − 1 , ˆ T ◦ ( I + θ ) − 1 , ˆ ✉ ◦ ( I + θ ) − 1 ) . J ( θ , ˆ ✈ , ˆ T , ˆ ✉ ) := J (Γ θ , ˆ

  18. Shape derivatives for a multiphysics system Shape derivative of arbitrary functionals Proposition Let J (Γ , ✉ , T , ✈ , p ) an arbitrary functional with continuous partial derivatives and ✉ (Γ) , T (Γ) , ✈ (Γ) , p (Γ) the above state variables. Then, if these are smooth enough, Γ �→ J (Γ , ✉ (Γ) , T (Γ) , ✈ (Γ) , p (Γ)) is shape differentiable and the derivative reads: � � d J (Γ θ , ✈ (Γ θ ) , p (Γ θ ) , T (Γ θ ) , ✉ (Γ θ )) ( θ ) d θ � = ∂ J ∂ θ ( θ ) + ( ❢ f · ✇ − σ f ( ✈ , p ) : ∇ ✇ + ♥ · σ f ( ✇ , q ) ∇ ✈ · ♥ + ♥ · σ f ( ✈ , p ) ∇ ✇ · ♥ )( θ · ♥ ) d s Γ � � � ∂ T s ∂ S s ∂ T f ∂ S f + k s ∇ T s · ∇ S s − k f ∇ T f · ∇ S f + Q f S f − Q s S s − 2 k s ∂ ♥ + 2 k f ( θ · ♥ ) d s ∂ ♥ ∂ ♥ ∂ ♥ Γ � + ( σ s ( ✉ , T s ) : ∇ r − ❢ s · r − ♥ · Ae ( r ) ∇ ✉ · ♥ − ♥ · σ s ( ✉ , T s ) ∇ r · ♥ ) ( θ · ♥ ) d s Γ Partial derivative for J with respect to the shape.

  19. Shape derivatives for a multiphysics system Shape derivative of arbitrary functionals Proposition Let J (Γ , ✉ , T , ✈ , p ) an arbitrary functional with continuous partial derivatives and ✉ (Γ) , T (Γ) , ✈ (Γ) , p (Γ) the above state variables. Then, if these are smooth enough, Γ �→ J (Γ , ✉ (Γ) , T (Γ) , ✈ (Γ) , p (Γ)) is shape differentiable and the derivative reads: � � d J (Γ θ , ✈ (Γ θ ) , p (Γ θ ) , T (Γ θ ) , ✉ (Γ θ )) ( θ ) d θ � = ∂ J ∂ θ ( θ ) + ( ❢ f · ✇ − σ f ( ✈ , p ) : ∇ ✇ + ♥ · σ f ( ✇ , q ) ∇ ✈ · ♥ + ♥ · σ f ( ✈ , p ) ∇ ✇ · ♥ )( θ · ♥ ) d s Γ � � � ∂ T s ∂ S s ∂ T f ∂ S f + k s ∇ T s · ∇ S s − k f ∇ T f · ∇ S f + Q f S f − Q s S s − 2 k s ∂ ♥ + 2 k f ( θ · ♥ ) d s ∂ ♥ ∂ ♥ ∂ ♥ Γ � + ( σ s ( ✉ , T s ) : ∇ r − ❢ s · r − ♥ · Ae ( r ) ∇ ✉ · ♥ − ♥ · σ s ( ✉ , T s ) ∇ r · ♥ ) ( θ · ♥ ) d s Γ Three “adjoint” terms for each of the three physics.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend