a variational finite volume scheme for wasserstein
play

A variational finite volume scheme for Wasserstein gradient flows es - PowerPoint PPT Presentation

A variational finite volume scheme for Wasserstein gradient flows es 1 , T. O. Gallou et 2 , G. Todeschi 2 C. Canc` Inria Lille, Rapsodi 1 Inria Paris, MOKAPLAN 2 ICODE, January 8, 2010 Wasserstein gradient flows domain R d convex,


  1. A variational finite volume scheme for Wasserstein gradient flows es 1 , T. O. Gallou¨ et 2 , G. Todeschi 2 C. Canc` Inria Lille, Rapsodi 1 Inria Paris, MOKAPLAN 2 ICODE, January 8, 2010

  2. Wasserstein gradient flows • domain Ω ∈ R d convex, bounded open • energy E : L 1 ( Ω ; R + ) → [0 , + ∞ ], convex • ρ 0 ∈ L 1 ( Ω ; R + ), E ( ρ 0 ) < + ∞ ∂ t � − ∇ · ( � ∇ δ E in Q T = Ω × (0 , T ) , δρ [ � ]) = 0 � ∇ δ E δρ [ � ] · n = 0 on Σ T = ∂ Ω × (0 , T ) , � ( · , 0) = ρ 0 in Ω .

  3. JKO scheme • τ time discretization step � ρ 0 τ = ρ 0 , ρ n 2 τ W 2 1 2 ( ρ , ρ n − 1 τ ∈ argmin ρ ) + E ( ρ ) . τ dynamical formulation � t n � 1 ρ | v | 2 d x d t + E ( ρ ( t n )) , inf ρ , v 2 t n − 1 Ω with the constraints ( ρ ≥ 0) in Ω × ( t n − 1 , t n ) , ∂ t ρ + ∇ · ( ρ v ) = 0 ρ v · n = 0 on ∂ Ω × ( t n − 1 , t n ) , ρ ( t n − 1 ) = ρ n − 1 in Ω . τ

  4. Inf-Sup problem • m = ρ v • φ is the Lagrange multiplier for the continuity equation � t n � � t n � | m | 2 2 ρ d x d t + ( ρ∂ t φ + m · ∇ φ ) d x d t ρ , m sup inf t n − 1 t n − 1 φ Ω Ω � [ φ ( t n − 1 ) ρ n − 1 − φ ( t n ) ρ ( t n )] d x + E ( ρ ( t n )) . + τ Ω minimize in m , m = − ρ ∇ φ . � t n � ( ∂ t φ − 1 2 | ∇ φ | 2 ) ρ d x d t sup inf ρ t n − 1 φ Ω � [ φ ( t n − 1 ) ρ n − 1 − φ ( t n ) ρ ( t n )] d x + E ( ρ ( t n )) . + τ Ω

  5. Dual problem dual problem � � � � φ ( t n − 1 ) ρ n − 1 E ( ρ ( t n )) − φ ( t n ) ρ ( t n ) d x d x + inf sup , τ ρ ( t n ) φ ( t n − 1 ) Ω Ω subject to the constraints − ∂ t φ + 1 2 | ∇ φ | 2 ≤ 0 in Ω × ( t n − 1 , t n ) , φ ( t n ) ≤ δ E δρ [ ρ ( t n )] in Ω , φ ( t n ) = δ E δρ [ ρ ( t n )] ρ ( t n ) a.e .

  6. Saddle point • Monotonicity of the initial value of HJ (second membre – final condition) • Saturation of the inequalities Optimality conditions : ∂ t φ − 1 2 | ∇ φ | 2 = 0 , in Ω × ( t n − 1 , t n ) in Ω × ( t n − 1 , t n ) ∂ t ρ − ∇ · ( ρ ∇ φ ) = 0 , with ρ ( t n − 1 ) = ρ n − 1 , in Ω τ φ ( t n ) = δ E δρ [ ρ ( t n )] , in Ω

  7. weighted H − 1 distance dissipation �� � 1 / 2 ρ ) = 1 ρ | v | 2 d x D ( ρ ; ˙ 2 inf v Ω with the constraints ρ + ∇ · ( ρ v ) = 0 ˙ in Ω ρ v · n = 0 on ∂ Ω duality D ( ρ ; ξ ) = ( D ∗ ( ρ ; · )) ∗ D ( ρ ; ρ − µ ) = 1 2 � ρ − µ � ˙ = H − 1 ρ �� � 1 / 2 1 ρ = 1 ρ | ∇ ψ | 2 d x = D ∗ ( ρ ; ψ ) 2 � ψ � ˙ H 1 2 Ω with ψ solution to ρ − µ − ∇ · ( ρ ∇ ψ ) = 0 in Ω , ∇ ψ · n = 0 on ∂ Ω .

  8. Linearized inf-sup problem LJKO scheme � � 1 � 2 ρ n � ρ − ρ n − 1 τ ∈ argmin ρ ( Ω ) + E ( ρ ) , n ≥ 1 . H − 1 ˙ τ 2 τ ρ ∈ P ( Ω ) Change of variable ( ρ , ψ ) �→ ( ρ , m = − ρ ∇ ψ ) � � ρ − ρ n − 1 + ∇ · m = 0 | m | 2 in Ω , τ 2 τρ d x + E ( ρ ) , inf subject to: m · n = 0 ρ , m on ∂ Ω . Ω saddle point � � � | m | 2 2 τρ d x − ( ρ − ρ n − 1 ) φ d x + m · ∇ φ d x + E ( ρ ) , ρ , m sup inf τ φ Ω Ω Ω

  9. Linearized optimality conditions saddle point � � ( − φ − τ ρ n − 1 φ d x + inf 2 | ∇ φ | 2 ) ρ d x + E ( ρ ) . sup τ ρ φ Ω Ω optimality conditions τ + τ τ | 2 = δ E φ n 2 | ∇ φ n δρ [ ρ n τ ] , ρ n τ − ρ n − 1 τ − ∇ · ( ρ n τ ∇ φ n τ ) = 0 , τ monotonicity of discrete HJ equation = ⇒ saturation constraints

  10. Space discretization Classicale finite volume mesh (ex: Cartesian grids, Delaunay triangulations or Vorono¨ ı tessellations.) � � T , Σ , ( x K ) K ∈ T • triplet • cell K ∈ T measure m K > 0. • face σ ∈ Σ measure m σ = H d − 1 ( σ ) > 0. • K ∈ T , Σ K of Σ such that ∂ K = � σ ∈ Σ K σ , � K ∈ T Σ K = Σ . • cell-centers ( x K ) K ∈ T orthogonal to K | L face of K , L ∈ T , same orientation as n KL outward w.r.t. K . • Σ ext = { σ ⊂ ∂ Ω } are not involved (no boundary fluxes) • N K the neighboring cells of K • d σ = | x K − x L | , diamond cell ∆ σ , • measure m ∆ σ = m σ d σ / d , transitivity a σ = m σ / d σ

  11. Upstream weighted dissipation potentials L 2 ( R T ) scalar product � 〈 h , φ 〉 T = ∀ h = ( h K ) K ∈ T , φ = ( φ K ) K ∈ T , h K φ K m K , K ∈ T 1 2 � φ � 2 ρ dissipation, ˙ H 1 � T ( ρ ; φ ) = 1 a σ ρ σ ( φ K − φ L ) 2 ≥ 0 , D ∗ 2 σ ∈ Σ σ = K | L � ρ K if φ K > φ L , ∀ σ = K | L ∈ Σ . ρ σ = ρ L if φ K < φ L , not symmetric D ∗ T ( ρ ; φ ) ∕ = D ∗ T ( ρ ; − φ )

  12. Upstream weighted dissipation potentials II � h = ( h K ) K ∈ T ∈ R T � � � 〈 h , 1 〉 T = 0 R T 0 = � F = ( F K σ , F L σ ) σ = K | L ∈ Σ ∈ R 2 Σ � � � F T = � F K σ + F L σ = 0 . discrete dissipation � ( F σ ) 2 ∀ h ∈ R T D T ( ρ ; h ) = inf d σ m σ ≥ 0 , 0 , 2 ρ σ F σ ∈ Σ subject to (continuity equation) � h K m K = m σ F K σ , ∀ K ∈ T . σ ∈ Σ K � ( F σ ) 2 0 if F σ = 0 and ρ σ = 0 , = 2 ρ σ + ∞ if F σ > 0 and ρ σ = 0 , upwind choice ρ σ = ρ K if F K σ > 0 , ρ L if F L σ > 0 ,

  13. Discrete duality duality 〈 h , φ 〉 T − D ∗ ∀ h ∈ R T D T ( ρ ; h ) = sup T ( ρ ; φ ) , 0 . φ T ( ρ ; φ ) = 1 D T ( ρ ; h ) = D ∗ 2 〈 h , φ 〉 T . with (identification) � a σ ρ σ ( φ K − φ L ) , ∀ K ∈ T , h K m K = σ ∈ Σ K σ = K | L or φ K − φ L F K σ = ρ σ , ∀ σ = K | L ∈ Σ . d σ

  14. Discrete JKO � � � = ( ρ 0 + R T � 〈 ρ , 1 〉 T = 〈 ρ 0 , 1 〉 T P T = ρ ∈ R T 0 ) ∩ R T + . + convexity of ρ �→ D T ( ρ ; µ − ρ ) 〈 µ − ρ , φ 〉 T − D ∗ D T ( ρ ; µ − ρ ) = sup T ( ρ ; φ ) . φ discrete JKO 1 ρ n ∈ argmin τ D T ( ρ ; ρ n − 1 − ρ ) + E T ( ρ ) , n ≥ 1 . ρ ∈ P T direct existence uniqueness (of ρ n ) and energy estimates

  15. Inf-Sup problem � ( F σ ) 2 1 ρ ∈ P T inf inf d σ m σ + E T ( ρ ) . F τ 2 ρ σ σ ∈ Σ φ Lagrange multiplier for � m K ( ρ n − 1 − ρ ) = m σ F K σ , ∀ K ∈ T . σ ∈ Σ K φ K − φ L minimize in F K σ , F K σ = ρ σ d σ � � � T − τ ρ n − 1 − ρ , φ a σ ρ σ ( φ K − φ L ) 2 + E T ( ρ ) . sup inf 2 ρ ≥ 0 φ σ ∈ Σ σ = K | L

  16. Optimality conditions � � � T − τ ρ n − 1 − ρ , φ a σ ρ σ ( φ K − φ L ) 2 + E T ( ρ ) . sup inf 2 ρ ≥ 0 φ σ ∈ Σ σ = K | L Unique saddle point � � L ) + � 2 = ∂ E T K + τ m K φ n ( φ n K − φ n ( ρ n ) , a σ 2 ∂ρ K σ ∈ Σ K � ( ρ n K − ρ n − 1 a σ ρ n σ ( φ n K − φ n ) m K + τ L ) = 0 K σ ∈ Σ K up-winding leads saturation of the constraints

  17. Monotonicity 2 | ∇ φ | 2 is monotone. the inverse of the operator φ �→ φ + τ � � ( φ K − φ L ) + � 2 , τ G K ( φ ) := φ K + ∀ K ∈ T . a σ 2 m K σ ∈ Σ K σ = K | L min φ implies | ∇ φ | 2 = 0 lemma f ∈ R T , there exists a unique solution to G ( φ ) = f , and it satisfies min f ≤ φ ≤ max f . let φ , � φ be the solutions corresponding to f and � f then f ≥ � φ ≥ � f = ⇒ φ .

  18. Proof: f ≥ � f let K ∗ be the cell such that � � φ K ∗ − ˜ φ K − ˜ φ K ∗ = min φ K . K ∈ T φ K ∗ − ˜ φ K ∗ ≤ φ L − ˜ ⇒ φ K ∗ − φ L ≤ ˜ φ K ∗ − ˜ φ L = φ L � φ L ) + � 2 � � � ( φ K ∗ − φ L ) + � 2 ≤ τ τ (˜ φ K ∗ − ˜ a σ a σ . 2 m K 2 m K σ ∈ Σ K ∗ σ ∈ Σ K ∗ σ = K ∗ | L σ = K ∗ | L G K ∗ ( φ ) ≥ G K ∗ (˜ φ ) yields φ K ∗ ≥ ˜ φ K ∗ φ K ≥ ˜ φ K • uniqueness of the solution φ of G ( φ ) = f • maximum principle • Existence

  19. Saturation of the constraints the inf-sup rewrites sup φ inf ρ ≥ 0 � � � T − τ ρ n − 1 − ρ , φ a σ ρ σ ( φ K − φ L ) 2 + E T ( ρ ) 2 σ ∈ Σ σ = K | L � � � � � ( φ K − φ L ) + � 2 T − τ ρ n − 1 − ρ , φ = E T ( ρ ) + a σ ρ K 2 σ ∈ Σ K K σ = K | L � � ρ n − 1 , φ = E T ( ρ ) + T − 〈 ρ , G ( φ ) 〉 T . at ρ n , φ n is optimal in � � E T ( ρ n ) + ρ n − 1 , φ T − 〈 ρ n , G ( φ ) 〉 T . sup φ

  20. Energy estimates direct estimate E T ( ρ n ) + 1 τ D T ( ρ n ; ρ n − 1 − ρ n ) ≤ E T ( ρ n − 1 ) improved estimate � n � E T ( ρ n ) + τ D ∗ T ( ρ n ; φ n ) + τ D ∗ ρ n ; ˇ ≤ E T ( ρ n − 1 ) , ˇ φ T ρ n solution of classical backward Euler ˇ � 1 ∂ E T ρ n K − ρ n − 1 ρ n σ (ˇ φ n K − ˇ φ n φ n ˇ ρ n ) (ˇ ) m K + τ a σ ˇ L ) = 0 , K = (ˇ K m K ∂ρ K σ ∈ Σ K

  21. Convergence � � L ) + � 2 = ∂ E T K + τ m K φ n ( φ n K − φ n ( ρ n ) , a σ 2 ∂ρ K σ ∈ Σ K � ( ρ n K − ρ n − 1 a σ ρ n σ ( φ n K − φ n ) m K + τ L ) = 0 K σ ∈ Σ K • weak solution of ∂ t � − ∇ · ( � ∇ δ E δρ [ � ]) = 0 • Fokker-Planck, non linear di ff usion without drift � � � ρ K log ρ K e − V K − ρ K + e − V K E T ( ρ ) = m K K ∈ T 2 | ∇ φ | 2 → 0 everywhere • di ffi culty : τ

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend