hamiltonian structure of the bfcg theory
play

HAMILTONIAN STRUCTURE OF THE BFCG THEORY Marko Vojinovi c - PowerPoint PPT Presentation

HAMILTONIAN STRUCTURE OF THE BFCG THEORY Marko Vojinovi c Institute of Physics, University of Belgrade joint work with Aleksandar Mikovi c Lusofona University and GFMUL, Portugal THE PROBLEM OF QUANTUM GRAVITY Why quantize gravity?


  1. HAMILTONIAN STRUCTURE OF THE BFCG THEORY Marko Vojinovi´ c Institute of Physics, University of Belgrade joint work with Aleksandar Mikovi´ c Lusofona University and GFMUL, Portugal

  2. THE PROBLEM OF QUANTUM GRAVITY Why quantize gravity? • same reasons as electrodynamics (two-slit experiment, hydrogen atom, . . . ) • resolution of singularities (black holes, Big Bang, . . . ) • black hole information paradox (nonunitary evolution?) • theoretical and aesthetical reasons. . . How to quantize gravity? • perturbation theory does not work (nonrenormalizability of gravity). . . • almost zero experimental results to guide us. . . • . . . we have a problem!

  3. LOOP QUANTUM GRAVITY The idea • Wilson loops are chosen as basic degrees of freedom, • formalized as “spin network states”, • canonically quantized. Achievements • nonperturbative quantization of GR, • kinematic sector of the theory well-defined, • lengths, areas and volumes of space quantized! Drawbacks • dynamics described only in principle, • no proof of semiclassical limit, • very limited possibility for calculations.

  4. SPINFOAM MODELS The idea • build up on canonical LQG (use the same degrees of freedom, construct the same structure of the Hilbert space, etc.), • rewrite GR action using the Plebanski formalism, � B ab ∧ R ab + φ abcd B ab ∧ B cd , S = • discretize spacetime into 4-simplices, • perform covariant quantization of the BF sector, by providing a definition for the gravitational path integral, � � � � � � � � Z = D ω D B exp = . . . = A 2 (Λ f ) A 4 (Λ v ) , i B ∆ R ∆ v ∆ Λ f • enforce the Plebanski constraint by restricting the representations Λ and redefining the vertex amplitude A 4 .

  5. SPINFOAM MODELS Achievements • well-defined nonperturbative quantum theory of gravity, • both kinematical and dynamical sectors under control, • can have a proper semiclassical limit. Drawbacks • geometry is “fuzzy” at the Planck scale, • has many different semiclassical limits, • matter coupling is problematic, • hard to extract any results. The reason for these drawbacks: tetrads are not explicitly present in the action!

  6. THE BFCG ACTION One can associate the BFCG action to the Poincar´ e 2-group: � B ab ∧ R ab + C a ∧ G a , ( G a = dβ a + ω a b ∧ β b ) . S = Note that the Lagrange multiplier C a is a 1 -form and has an equation of motion ∇ C a = 0 , exactly the same as the tetrad e ! Therefore, C a ≡ e a , � • identify: KEY STEP • rename: BFCG → BFEG, and rewrite the action as � B ab ∧ R ab + e a ∧ G a . S =

  7. THE CONSTRAINED BFCG ACTION The BFCG action can be constrained to give GR: � B ab ∧ R ab + e a ∧ G a B ab − ε abcd e a ∧ e b � � S = − φ ab . � �� � � �� � constraint topological sector Equations of motion are equivalent to: • equations that determine the multipliers and β : φ ab = R ab , B ab = ε abcd e c ∧ e d , β a = 0 • Einstein equations: ε abcd R bc ∧ e d = 0 , • no-torsion equation: ∇ e a = 0 . This is classically equivalent to general relativity!

  8. THE MAIN BENEFITS Introduction of matter fields is straightforward: � B ab ∧ R ab + e a ∧ G a − φ ab B ab − ε abcd e a ∧ e b � � S = + � � � d + { ω, γ d } + im γ d ↔ ε abcd e a ∧ e b ∧ e c ∧ ¯ 2 e d + iκ ψ − ψ � − i 3 κ ( κ = 8 ε abcd e a ∧ e b ∧ β c ¯ 3 πl 2 ψγ 5 γ d ψ, p ) . 4 The covariant quantization is possible — spincube model: � � � � � � � � Z = D ω D B D e D β exp B ∆ R ∆ + = . . . = i e l G l ∆ l � � � � = A 1 (Λ p ) A 2 (Λ f ) A 4 (Λ v ) . Λ p v f

  9. THE HAMILTONIAN STRUCTURE The BFCG action in components: � d 4 x ε µνρσ � � � � ∂ ρ ω ab σ + ω a cρ ω cb + e aµ ( ∂ ν β a ρσ + ω a cν β c S = ρσ ) B abµν . σ The variables: B ab e a ω ab β a µν ( x ) , µ ( x ) , µ ( x ) and µν ( x ) . Momenta and primary constraints: ≡ π ( B ) abµν ≈ 0 , ≡ π ( e ) aµ ≈ 0 , P ( B ) abµν P ( e ) aµ ≡ π ( ω ) ab 0 ≈ 0 , ≡ π ( ω ) abi − 2 ε 0 ijk B abjk ≈ 0 , P ( ω ) ab 0 P ( ω ) abi ≡ π ( β ) a 0 i ≈ 0 , ≡ π ( β ) aij + 2 ε 0 ijk e ak ≈ 0 . P ( β ) a 0 i P ( β ) aij The simultaneous Poisson brackets: d ] δ ρ { B abµν ( � x, t ) , π ( B ) cdρσ ( � x ′ , t ) } = 4 δ a [ c δ b [ µ δ σ ν ] δ (3) ( � x ′ ) , x − � { e aµ ( � x, t ) , π ( e ) bν ( � x ′ , t ) } = δ a b δ ν µ δ (3) ( � x ′ ) , x − � { ω abµ ( � x, t ) , π ( ω ) cdν ( � x ′ , t ) } = 2 δ a [ c δ b d ] δ ν µ δ (3) ( � x ′ ) , x − � b δ ρ { β aµν ( � x, t ) , π ( β ) bρσ ( � x ′ , t ) } = 2 δ a [ µ δ σ ν ] δ (3) ( � x ′ ) . x − �

  10. THE HAMILTONIAN STRUCTURE The canonical Hamiltonian: � x ε 0 ijk � � �� d 3 � − B ab 0 i R ab jk − e a 0 G aijk − 2 β a 0 k T a ∇ i B ab jk − e a i β b H c = ij − ω ab 0 , jk The total Hamiltonian: � � µν + λ ( e ) a µ + d 3 � λ ( B ) ab H T = H c + µν P ( B ) ab µ P ( e ) a x µ + λ ( β ) a µν � + λ ( ω ) ab µ P ( ω ) ab µν P ( β ) a . Consistency of the primary constraints: P ( B ) ab 0 i = 2 ε 0 ijk S ( R ) abjk , ˙ S ( R ) abjk ≡ R abjk ≈ 0 , ˙ P ( e ) a 0 S ( G ) a ≡ ε 0 ijk G aijk ≈ 0 , = S ( G ) a , where ˙ = 2 ε 0 ijk S ( T ) ajk , P ( β ) a 0 i S ( T ) aij ≡ T aij ≈ 0 , S ( Beβ ) ab ≡ ε 0 ijk � � ˙ P ( ω ) ab 0 ∇ i B abjk − e [ ai β b ] jk = 2 S ( Beβ ) ab , ≈ 0 .

  11. THE HAMILTONIAN STRUCTURE Determined multipliers: P ( B ) abjk ≈ 0 ˙ λ ( ω ) abi = 1 2 ∇ i ω ab 0 , P ( e ) ak ≈ 0 ˙ λ ( β ) aij = ∇ [ i β a 0 j ] − 1 2 ω ab 0 β bij , implies P ( β ) ajk ≈ 0 ˙ λ ( e ) ai = ∇ i e a 0 − ω ab 0 e bi , λ ( B ) abij = 1 � � P ( ω ) abk ≈ 0 ˙ ∇ [ i B ab 0 j ] + ω [ a c 0 B b ] c + ij 2 � � + 1 e [ a 0 β b ] ij + e [ a j β b ] 0 i − e [ a i β b ] . 0 j 4 Consistency of secondary constraints is automatic: ˙ = 2 ω [ a c 0 S ( R ) b ] c S ( R ) abij ij , ˙ = ε 0 ijk β b 0 k S ( R ) ab ij − ω a b 0 S ( G ) b , S ( G ) a = 1 ˙ S ( T ) aij 2 e b 0 S ( R ) ab ij − ω a b 0 S ( T ) b ij , S ( Beβ ) ab = 2 ε 0 ijk � � 0 S ( G ) b ] + 2 ω [ a ˙ B [ a c 0 k S ( R ) b ] c ij + β [ a 0 k S ( T ) b ] + e [ a c 0 S ( Beβ ) b ] c . ij

  12. THE HAMILTONIAN STRUCTURE Algebra of constraints: { P ( B ) abjk , P ( ω ) cdi } 8 ε 0 ijk η a [ c η bd ] δ (3) , = { P ( e ) ak , P ( β ) bij } − 2 ε 0 ijk η ab δ (3) , = 2 ε 0 ijk � b ∂ i δ (3) + ω abi δ (3) � { S ( G ) a , P ( β ) bjk } δ a = , { S ( G ) a , P ( ω ) cdi } 2 ε 0 ijk δ a [ c β d ] jk δ (3) , = { S ( T ) aij , P ( e ) bk } j ] δ (3) + ω ab [ i δ k δ a b ∂ [ i δ k j ] δ (3) , = � � { S ( T ) aij , P ( ω ) cdk } δ (3) , δ a [ c e d ] j δ k i − δ a [ c e d ] i δ k = j { S ( Beβ ) ab , P ( e ) ci } − ε 0 ijk δ [ a c β b ] jk δ (3) , = { S ( Beβ ) ab , P ( β ) cjk } − 2 ε 0 ijk e [ ai δ b ] c δ (3) , = 2 ε 0 ijk � � { S ( Beβ ) ab , P ( ω ) cdi } δ (3) , δ a [ c B d ] bjk + δ b [ c B ad ] jk = 4 ε 0 ijk � � � δ (3) � { S ( Beβ ) ab , P ( B ) cdjk } = d ] ∂ i δ (3) + δ a [ c δ b ω a [ ci δ b d ] + δ a [ c ω bd ] i , { S ( R ) abij , P ( ω ) cdk } � j ∂ i δ (3) − δ k i ∂ j δ (3) � 2 δ a [ c δ b δ k = + d ] � � δ (3) . δ a [ c ω d ] bj δ k i − δ a [ c ω d ] bi δ k j + ω a [ ci δ b d ] δ k j − ω a [ cj δ b d ] δ k +2 i

  13. THE HAMILTONIAN STRUCTURE First class constraints: 0 i , 0 , 0 , 0 i , P ( B ) ab P ( e ) a P ( ω ) ab P ( β ) a Second class constraints: jk , i , i , ij , P ( B ) ab P ( e ) a P ( ω ) ab P ( β ) a S ( R ) ab S ( G ) a , S ( Beβ ) ab , S ( T ) a ij , ij .

  14. THE HAMILTONIAN STRUCTURE The gauge symmetry generator: � 1 � � 0 i − ε ab i � � 0 − ε a G a � G [ ε ab i , ε ab , ε a , ε a d 3 � ε ab ε a P ( e ) a i ] = ˙ i P ( B ) ab i G ab + ˙ + x 2 i �� + 1 0 − ε ab G ab 0 i − ε a � � � ε ab P ( ω ) ab ε a ˙ + ˙ i P ( β ) a i G a , 2 where ji + 2 ω c G abi ≡ 2 ε 0 ijk S ( R ) abjk + ∇ j P ( B ) ab 0 i , [ a 0 P ( B ) b ] c i + 2 ω c 0 − 2 e [ a 0 P ( e ) b ] 0 − 2 e [ ai P ( e ) b ] i + G ab ≡ 2 S ( Beβ ) ab + ∇ i P ( ω ) ab [ a 0 P ( ω ) b ] c cij + 2 B c [ a 0 i P ( B ) b ] c 0 i − 2 β [ a 0 i P ( β ) b ] 0 i − β [ aij P ( β ) b ] ij , + B c [ aij P ( B ) b ] 0 − 1 0 i − 1 i − ω b 2 β b 4 β b ij , G a ≡ S ( G ) a + ∇ i P ( e ) a a 0 P ( e ) b 0 i P ( B ) ab ij P ( B ) ab 0 i − 1 0 i + 1 ji − ω b ≡ 2 ε 0 ijk S ( T ) ajk + ∇ j P ( β ) a 2 e b 2 e b ij . G ai a 0 P ( β ) b 0 P ( B ) ab j P ( B ) ab

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend