nucleosynthesis 12 c 16 o
play

Nucleosynthesis 12 C(, ) 16 O at MAGIX/MESA Stefan Lunkenheimer - PowerPoint PPT Presentation

Nucleosynthesis 12 C(, ) 16 O at MAGIX/MESA Stefan Lunkenheimer MAGIX Collaboration Meeting 2017 Topics S-Factor Simulation Outlook 2 S-Factor 3 Stages of stellar nucleosynthesis Hydrogen Burning (PPI-III & CNO Chain)


  1. Nucleosynthesis 12 C(𝛽, 𝛿) 16 O at MAGIX/MESA Stefan Lunkenheimer MAGIX Collaboration Meeting 2017

  2. Topics S-Factor Simulation Outlook 2

  3. S-Factor 3

  4. Stages of stellar nucleosynthesis β€’ Hydrogen Burning (PPI-III & CNO Chain) β€’ Fuel: proton β€’ π‘ˆ β‰ˆ 2 β‹… 10 7 K β€’ Main product: 4 He β€’ Helium Burning β€’ Fuel: 4 He β€’ π‘ˆ β‰ˆ 2 β‹… 10 8 K β€’ Main product: 12 C , 16 O 4

  5. Helium Burning in red giants β€’ Main reactions: 3𝛽 β†’ 12 C + 𝛿 12 C 𝛽, 𝛿 16 O β€’ 12 C/ 16 O abundance ratio β€’ Further burning states β€’ Nucleosynthesis in massive stars Cp. Hammache: 12 C 𝛽, 𝛿 16 O in massive star stellar evolution 5

  6. Gamow-Peak β€’ Fusion reaction below Coulomb barrier π‘™π‘ˆ ∼ 15 keV @ π‘ˆ = 2 β‹… 10 8 K β€’ Transmission probability governed by tunnel efffect β€’ Gamow-Peak 𝐹 0 β€’ Convolution of probability distribution οƒ˜ Maxwell-Boltxmann οƒ˜ QM Coulomb barrier transmission β€’ Depends on reaction and temperature Cp. Marialuisa Aliotta: Exotic beam studies in Nuclear Astrophyiscs 6

  7. S-Factor β€’ Nonresonant Cross section 𝜏 𝐹 = 1 𝐹 𝑓 βˆ’2πœŒπ‘Ž 1 π‘Ž 2 𝛽𝑑 𝑇(𝐹) 𝑀 β€’ 𝑓 βˆ’ Factor = probability to tunnel through Coulomb barrier 𝑀 = velocity between the two nuclei 𝛽 = fine structure constant π‘Ž 1 , π‘Ž 2 = Proton number of the nuclei β€’ 𝑇 𝐹 = Deviation Factor from trivial model 7

  8. Gamow-Peak for 12 C 𝛽, 𝛿 16 O 𝑇 𝐹 = 𝐹 β‹… 𝑓 𝑐/ 𝐹 𝜏(𝐹) β€’ Gamow-Peak ( π‘ˆ β‰ˆ 2 β‹… 10 8 K ) 2 1 3 𝐹 0 = 2 𝑐 β‹… 𝑙 β‹… π‘ˆ β‰ˆ 300 keV β€’ 𝑙 = Bolzmann constant β€’ 𝑐 = πœŒπ›½π‘Ž 1 π‘Ž 2 2πœˆπ‘‘ 2 𝑁 1 𝑁 2 𝑁 1 +𝑁 2 reduced mass β€’ 𝜈 = β€’ Gamow Width Ξ” = 4 𝐹 0 π‘™π‘ˆ/3 8

  9. Cross section β€’ 𝜏(𝐹 0 )~10 βˆ’17 barn β€’ Precise low-energy measurements required οƒ˜ MAGIX@MESA β€’ Direct measurements never done @ 𝐹cm < 0.9 MeV Cp. Simulation of Ugalde 2013 9

  10. Measurement of S-Factor Approximate 𝑇(300 keV) β€’ Buchmann (2005) β€’ 102 βˆ’ 198 keVβ‹…b β€’ Caughlan and Fowler (1988) β€’ 120 βˆ’ 220 keV β‹… b β€’ Hammer (2005) β€’ 162 Β± 39 keVβ‹…b 10

  11. Measurement at MAGIX@MESA β€’ Time reverted reaction 16 O(𝛿, 𝛽) 12 C οƒ˜ Cross section gain a factor of Γ— 100 β€’ Inelastic 𝑓 βˆ’ scattering on oxygen gas β€’ Measurement of coincidence ( 𝑓 βˆ’ , 𝛽 ) οƒ˜ suppress background οƒ˜ 𝛽 -Particle with low energy β€’ High Luminosity 11

  12. Inverse Kinematik β€’ Time reversed reaction: 𝜏(𝐹 0 )~10 βˆ’15 barn β€’ High Energy resolution required οƒ˜ MAGIX 𝐹 0 Cp. Simulation of Ugalde 2013 12

  13. Simulation 13

  14. Introduction β€’ MXWare (see talk Caiazza) β€’ Monte Carlo Integration β€’ Fix Beam Energy β€’ Target at Rest β€’ Simulation acceptance 4𝜌 14

  15. Kinematik β€’ Momentum transfer π‘Ÿ 2 = βˆ’4𝐹𝐹 β€² sin 2 πœ„ 2 β€’ Photon Energy 𝑋 2 βˆ’π‘ 2 βˆ’π‘Ÿ 2 πœ‰ = 2𝑁 with 𝜈 + p 𝑃 𝜈 2 𝑋 2 = p 𝛿 β€’ invariant mass of photon and oxygen 𝑁 = Oxygen mass β€’ β€’ Inelastic scattering cross section 𝑒Ω𝑒𝐹′ = 4𝛽 2 𝐹 β€²2 𝑒 2 𝜏 2 π‘Ÿ 2 , πœ‰ β‹… cos 2 πœ„ 1 π‘Ÿ 2 , πœ‰ β‹… sin 2 πœ„ 𝑋 + 2𝑋 π‘Ÿ 4 2 2 15

  16. Virtual Photon flux Relation beween structural functions and the transversal / longitudinal part of the virtual photon cross section 𝜏 π‘ˆ , 𝜏 𝑀 βˆ’1 πœ‰ 2 𝑋 2 βˆ’π‘ 2 πœ† πœ† with πœ† = 𝑋 1 = 4𝜌 2 𝛽 𝜏 π‘ˆ 𝑋 2 = 4𝜌 2 𝛽 1 βˆ’ (𝜏 𝑀 + 𝜏 π‘ˆ ) π‘Ÿ 2 2𝑁 So we get 𝑒 3 𝜏 𝑒Ω𝑒𝐹 β€² = Ξ“ 𝜏 π‘ˆ + 𝜁𝜏 𝑀 with βˆ’1 𝐹 β€² πœ‰ 2 βˆ’π‘Ÿ 2 π›½πœ† 1 πœ„ tan 2 Ξ“ = 2𝜌 2 π‘Ÿ 2 β‹… 𝐹 β‹… 𝜁 = 1 βˆ’ 2 π‘Ÿ 2 1βˆ’πœ 2 For π‘Ÿ 2 β†’ 0 : 𝜏 𝑀 vanish and 𝜏 π‘ˆ β†’ 𝜏 tot 𝛿 βˆ— + 16 O β†’ π‘Œ 𝑒 5 𝜏 𝑒Ω 𝑓 𝑒𝐹 β€² 𝑒Ω βˆ— = Ξ“ π‘’πœ 𝑀 𝑒Ω βˆ— Cp. Halzen & Martin: Quarks and Leptons 16

  17. Time reversal Factor β€’ Direct cross section -> Measurement β€’ Compare with inverse cross section -> extract the S-Factor β€’ Calculate time reversal factor 17

  18. Time reversal Factor Phase space examination under T-symmetry invariance 2 | π‘ž| 𝑔 𝜏 𝑗→𝑔 (2𝐽 3 +1)(2𝐽 4 +1) 𝜏 𝑔→𝑗 = (2𝐽 1 +1)(2𝐽 2 +1) β‹… 2 | π‘ž| 𝑗 Spinstatistic : I=0 for even – even nuclides ( 4 He, 12 C, 16 O ) in ground state for photon. 2𝐽 𝛿 + 1 = 2 So we get 2 2 𝑋 2 βˆ’ 𝑛He + 𝑛C 𝑋 2 βˆ’ 𝑛He βˆ’ 𝑛C 𝜏( 16 O 𝛿, 𝛽 12 C) = 1 β‹… 𝜏( 12 C(𝛽, 𝛿) 16 O) 𝑋 2 βˆ’ 𝑛O 𝑋 2 βˆ’ 𝑛O 2 2 2 Cp. Mayer-Kuckuk Kernphysik: Chapter 7.3 18

  19. Result of first simulations Nonresonant cross section 𝜏( 16 𝑃(𝛿, 𝛽) 12 𝐷) β€’ Simulation correlate to the results of Ugalde β€’ 4𝜌 βˆ’ Simulation β€’ ∼ 0.1 mHz Reaction Rate by 𝐹 0 with 𝑀 ∼ 10 34 𝑑𝑛 βˆ’2 𝑑 βˆ’1 οƒ˜ Worst case Luminosity (see later talks) β€’ Now simulation with 𝑓 βˆ’ , 𝛽 βˆ’ Acceptance needed. 19

  20. Outlook 20

  21. Simulation β€’ Finish simulation οƒ˜ electron acceptance οƒ˜ 𝛽 -Particle acceptance β€’ Preliminary results οƒ˜ Need measurement on angles smaller than Spectrometer coverage οƒ˜ 0 degree scattering -> New Theoretic calculations 21

  22. 𝛽 -Detection β€’ Low kinetic energy οƒ˜ ∼ 20 MeV β€’ Needs specialized detector οƒ˜ Silicon-Strip-Detector β€’ Choose and Test Silicon-Strip-Detectors in the Lab 22

  23. THANK YOU FOR YOUR ATTENTION! http://magix.kph.uni-mainz.de

  24. BACKUP

  25. Production factor Waver and Woosley Phys Rep 227 (1993) 65 25

  26. Two-Body Reaction In the center of mass frame 16 𝑃(𝛿 βˆ— , 𝛽) 12 𝐷 𝑋 2 +𝑛 3 2 βˆ’π‘› 4 2 𝑋 2 +𝑛 4 2 βˆ’π‘› 3 2 𝐹 3 = 𝐹 4 = 2𝑋 2𝑋 𝑋 2 βˆ’ 𝑛 3 +𝑛 4 2 𝑋 2 βˆ’ 𝑛 3 βˆ’π‘› 4 2 𝐹 2 βˆ’ 𝑛 2 = π‘ž = 2𝑋 26

  27. Electron scattering Cross section inelastic scattering (cp. Chapter 7.2) βˆ— 𝑒 2 𝜏 π‘’πœ 1 π‘Ÿ 2 , πœ‰ tan 2 πœ„ 2 π‘Ÿ 2 , πœ‰ + 2𝑋 𝑒Ω𝑒𝐹′ = 𝑋 𝑒Ω 2 Mott With structural functions 𝑋 1 , 𝑋 2 And Mott crossection (in this case) βˆ— = 4𝛽 2 𝐹 β€²2 π‘’πœ cos 2 πœ„ π‘Ÿ 4 𝑒Ω Mott 2 We get (cp. Halzen & Martin Chapter 8) 𝑒Ω𝑒𝐹′ = 4𝛽 2 𝐹 β€²2 𝑒 2 𝜏 2 π‘Ÿ 2 , πœ‰ β‹… cos 2 πœ„ 1 π‘Ÿ 2 , πœ‰ β‹… sin 2 πœ„ 𝑋 + 2𝑋 π‘Ÿ 4 2 2 27

  28. Basic of Simulation Connection between count rate and cross section 𝐡 Ξ© d𝜏 𝑂 = 𝑒Ω 𝑒Ω β‹… 𝑀𝑒𝑒 + 𝑂BG Ξ© With 𝑀 : Luminosity 𝑂 : Number of counts 𝐡 Ξ© ∢ Acceptance (1 full accepted, 0 not detected) 28

  29. Monte Carlo Integration Definition of mean value in volume π‘Š : 𝑔 = 1 𝑔 𝑦 𝑒 π‘œ 𝑦 π‘Š π‘Š Estimator for mean value: 𝑂 𝑔 β‰ˆ 1 𝑂 𝑔(𝑦 𝑗 ) 𝑗=1 Monte-Carlo Integration: 𝑂 𝑔 𝑦 𝑒 π‘œ 𝑦 = 𝑔 β‰ˆ π‘Š Β± π‘Š 𝑔 2 βˆ’ 𝑔 2 𝑂 𝑔 𝑦 𝑗 𝑂 π‘Š 𝑗=1 Strategies for numerical improvements: β€’ Improve convergence 1/ 𝑂 𝑔 2 βˆ’ 𝑔 2 β€’ Improve variance 29

  30. Cross section simulation π‘’πœ 𝑒Ω 𝑓 𝑒𝐹 𝑓 𝑒Ω βˆ— 𝑒Ω 𝑓 𝑒𝐹 𝑓 𝑒Ω βˆ— 𝑋 Transform Ξ©, 𝐹 with β†’ 𝑋, 1/π‘Ÿ 2 , 𝜚 det 𝐾 = π‘Ÿ 4 2𝑁𝐹𝐹 β€² With Monte-Carlo Integration: 𝑒Ω 𝑓 𝑒𝐹 𝑓 𝑒Ω βˆ— 𝑒Ω 𝑓 𝑒𝐹 𝑓 𝑒Ω βˆ— = V π‘’πœ π‘’πœ 𝑋, 1/π‘Ÿ 2 , 𝜚, Ξ© βˆ— N det 𝐾 β‹… 𝑒Ω 𝑓 𝑒𝐹 𝑓 𝑒Ω βˆ— 𝑗 π‘’πœ Define πœ• 𝑗 = π‘Š β‹… det 𝐾 β‹… 𝑒Ω 𝑓 𝑒𝐹 𝑓 𝑒Ω βˆ— So we get 2𝑁𝐹𝐹 β€² β‹… 𝑀 β‹… Ξ”πœš β‹… Δ𝑋 β‹… Ξ” cos πœ„ βˆ— β‹… Ξ”πœš βˆ— β‹… Ξ“ β‹… π‘’πœ 𝑀 𝑋 πœ• 𝑗 = π‘Ÿ 4 𝑒Ω βˆ— 30

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend