improved nuclear physics for supernovae
play

Improved nuclear physics for supernovae Implications for neutrino - PowerPoint PPT Presentation

Improved nuclear physics for supernovae Implications for neutrino spectra, nucleosynthesis and dark matter Ermal Rrapaj University of Washington, Seattle December 16, 2015 Core Collapse Supernovae Progenitor M 8 - 20 M R 500 -1500


  1. Improved nuclear physics for supernovae Implications for neutrino spectra, nucleosynthesis and dark matter Ermal Rrapaj University of Washington, Seattle December 16, 2015

  2. Core Collapse Supernovae Progenitor M ≈ 8 - 20 M ⊙ R ≈ 500 -1500 R ⊙ M ≈ 1.4 M ⊙ R ≈ R Earth F e S / N ∼ 1 5 R NS ≈ 10 53 erg 3 GM 2 BE ∼ ⊙ Collapse S / N ∼ 1 − 2 ν, ν ρ ∼ 10 14 − 10 15 gram / cm 3 PNS T =?

  3. Core Collapse Supernovae Progenitor M ≈ 8 - 20 M ⊙ R ≈ 500 -1500 R ⊙ The binding energy is carried away by ν, ν M ≈ 1.4 M ⊙ R ≈ R Earth F e S / N ∼ 1 5 R NS ≈ 10 53 erg 3 GM 2 BE ∼ ⊙ Collapse S / N ∼ 1 − 2 ν, ν ρ ∼ 10 14 − 10 15 gram / cm 3 PNS T =?

  4. Core Collapse Supernovae Progenitor What about M ≈ 8 - 20 M ⊙ dark matter ? R ≈ 500 -1500 R ⊙ The binding energy is carried away by ν, ν M ≈ 1.4 M ⊙ R ≈ R Earth F e S / N ∼ 1 5 R NS ≈ 10 53 erg 3 GM 2 BE ∼ ⊙ Collapse S / N ∼ 1 − 2 ν, ν ρ ∼ 10 14 − 10 15 gram / cm 3 PNS T =?

  5. Detection of SN87A Hirata et al, Phys. Rev. Lett. 58, (1490) 12 events in the burst sample observed in Kamiokande-II, and 8 events in the burst sample observed in the IMB detector

  6. Dark Matter, Why ? Astron.Astrophys. 571 (2014) A16 Energy composition of our universe: Planck Data ◮ Dark Energy: 68 . 3% ◮ Dark Matter (DM): 26 . 8% ◮ Attomic Matter: 4 . 8% ◮ Light: 0 . 005% ◮ Neutrinos: 0 . 0034%

  7. Dark Matter, Why ? Astron.Astrophys. 571 (2014) A16 Energy composition of our universe: Planck Data ◮ Dark Energy: 68 . 3% ◮ Dark Matter (DM): 26 . 8% ◮ Attomic Matter: 4 . 8% ◮ Light: 0 . 005% ◮ Neutrinos: 0 . 0034% So, what is Dark Matter?

  8. Can we ‘see’ dark matter? Essig et al, arxiv:1311.0029 (2013) Portal Particles Operators − ǫ eJ SM “Vector” Dark Photons µ F µν , ∂ µ a f a G µν ˜ a G µν , a f a F µν ˜ f a Ψ γ µ γ 5 Ψ “Axion” PseudoScalars ( µ S + λ S 2 ) H † H “Higgs” Dark Scalars “Neutrino” Sterile Neutrinos y N LHN

  9. Can we ‘see’ dark matter? Essig et al, arxiv:1311.0029 (2013) Portal Particles Operators − ǫ eJ SM “Vector” Dark Photons µ F µν , ∂ µ a f a G µν ˜ a G µν , a f a F µν ˜ f a Ψ γ µ γ 5 Ψ “Axion” PseudoScalars ( µ S + λ S 2 ) H † H “Higgs” Dark Scalars “Neutrino” Sterile Neutrinos y N LHN This talk will be focused on Dark Photons!

  10. Dark Photons: How? Holdom, Phys. Rev. B 166, (1986) 196 High - Energy 1 1 ǫ Y 1 ( B µν ) 2 − ( F ′ µν ) 2 − B µν F ‘ µν + A ′ A ′ 2 + g D J D m 2 µ A ′ µ L ⊃ − D 4 4 2 cos θ W 2 Low - Energy 1 1 µ A ′ µ + µ J EM m 2 � g B V B µ J B m 2 γ B ( V B µ ) 2 � L ⊃ g Q A ′ γ Q A ′ − µ − µ 2 2 Lee, Yang Phys. Rev. 98, 1501 (1955) Batell, deNerville, McKeen, Pospelov, Ritz Phys. Rev. D 90, 115014 (2014)

  11. Dark Photons: Why? γ Q Parameter Space γ B Parameter Space Snowmass report (2013) arXiv:1311.0029 Tulin Phys. Rev. D 89, 11408 (2014)

  12. Dark Photons: Why? http://hallaweb.jlab.org/experiment/APEX Experimental searches for γ Q e + γ Q e − APEX (spring 2016) at Jefferson Laboratory e − e − 10 − 2 � ǫ Q � 10 − 10 ◮ γ ◮ 65 MeV ≤ m γ Q ≤ 550 MeV Z Z Experimental searches for γ B γ γ Q Jlab Eta Factory (JEF) Experiment π o 10 − 1 � α B � 10 − 7 ◮ η u, d, s ◮ 140 MeV ≤ m γ B ≤ 550 MeV γ https://cnidlamp.jlab.org/RareEtaDecay/JDocDB/system/files/biblio/2015/04/jef-gan-aps-pdf.pdf And many more other experiments

  13. Implications for supernovae Dark matter cooling of PNS 1. produced in the hot core 2. light in mass − → copious amounts! 3. sap energy from the core 4. reduce neutrino energy and burst duration! Raffelt’s Criteria Conditions for fiducial calculations: ◮ T = 30 MeV ◮ ρ = 3 × 10 14 gram / cm 3 ˙ erg E ≈ 10 19 gram s = ⇒ Neutrino burst duration is halfed! ”Stars as laboratories for fundamental physics: The astrophysics of neutrinos, axions, and other weakly interacting particles” (University of Chicago Press, 1996)

  14. How is light dark matter produced ? Nucleon Bremsstrahlung K P 1 P 3 V NN P 2 P 4 What has been studied so far ?! ◮ Axions, Burrows, Turner, Brinkman, Phys. Rev. D 39, 1020,(1989) ◮ Kaluza–Klein gravitons and dilatons, Hannart, Phillips,Reddy, Savage, Nuc. Phys. B 595(2001) ◮ Neutralinos Dreiner, Hanhart, Langenfeld, Phillips Phys. Rev. D 68, 055004 (2003) ◮ Dark Photons Dent, Ferrer, Kraus arxiv: 1201.2683 (2012) Kazanas, Mohapatra, Nussinov Teplitz, Zhang Nuc. Phys. B. 90, 17, (2014)

  15. Current Dark Photon Constraint: Supernova Cooling Dent, Ferrer, Kraus arxiv: 1201.2683 (2012) Production by Bremsstrahlung K K P 1 P 3 P 1 P 3 P 1 P 3 P 1 P 3 π π π π P 4 P 2 P 4 P 2 P 4 P 2 P 4 P 2 K K ( a ) ( b ) ( c ) ( d ) P 1 P 3 π K P 2 P 4 ( e ) Emissivity γ ≤ 10 53 erg / s ← E ≤ 8 × 10 22 erg / g / s → ˙ L ˜

  16. Bremsstrahlung: Soft Radiation Approximation (SRA) Low Phys. Rev. 110, 974 (1958) K K P 1 P 3 P 1 P 3 P 1 P 3 P 1 P 3 P 4 P 2 P 4 P 2 P 4 P 2 P 4 P 2 K K ( a ) ( b ) ( c ) ( d ) γ ≈ − 4 πα em ǫ 2 d 3 k 2 ω ( ǫ µ J µ ) 2 d σ NN → NN d σ pp → pp ˜ � � � � P 1 P 3 P 1 P 2 P 3 P 4 J (2) , J (4) = = + − − − µ µ P 1 · K P 3 · K P 1 · K P 2 · K P 3 · K P 4 · K µ µ Rrapaj, Reddy arxiv:1511.09136 2 α em ǫ 2 � ∞ m γ Q / T n n n p Q ( MT ) 3 / 2 T 4 dx e − x x 3 I (2) ( ) σ (2) ǫ np → np γ Q = ˙ np ( xT ) √ π x m γ Q / T 2 α em ǫ 2 dx e − x x 4 � ∞ n i n j m γ B / T ) σ (4) B ( MT ) 3 / 2 T 5 I (4) ( ǫ ij → ij γ B = ˙ ( xT ) √ π ij M x m γ B / T d σ ni nj → ni nj d σ ni nj → ni nj � � σ (2) (1 − cos θ cm ) , σ (4) (1 − cos 2 θ cm ) = d cos θ cm = d cos θ cm ij ij d θ cm d θ cm

  17. Partial Wave Expansion vs OPEP Rrapaj, Reddy arxiv:1511.09136 10 3 Data 10 2 OPEP σ np [mb] L max = 0 L max = 1 10 1 L max = 2 L max = 3 L max = 4 L max = 5 10 0 10 − 1 0 20 40 60 80 100 120 140 160 180 E cm [MeV] Data from Nijmegen University database

  18. Partial Wave Expansion vs OPEP Rrapaj, Reddy arxiv:1511.09136 10 3 Low T Data 10 2 OPEP σ np [mb] L max = 0 L max = 1 10 1 L max = 2 L max = 3 L max = 4 L max = 5 10 0 10 − 1 0 20 40 60 80 100 120 140 160 180 E cm [MeV] Data from Nijmegen University database

  19. Partial Wave Expansion vs OPEP Rrapaj, Reddy arxiv:1511.09136 10 3 Low T High T Data 10 2 OPEP σ np [mb] L max = 0 L max = 1 10 1 L max = 2 L max = 3 L max = 4 L max = 5 10 0 10 − 1 0 20 40 60 80 100 120 140 160 180 E cm [MeV] Data from Nijmegen University database

  20. Dark Photon Constraint Rrapaj, Reddy arxiv:1511.09136 10 − 7 10 − 8 10 − 9 10 − 10 10 − 11 ǫ Q 10 − 12 10 − 13 10 − 14 10 − 15 OPEP Cooling: Raffelt Constraint 10 − 16 10 0 10 1 10 2 10 3 m γ Q [MeV]

  21. Dark Photon Constraint Rrapaj, Reddy arxiv:1511.09136 10 − 7 10 − 8 10 − 9 10 − 10 Emissivity ! 10 − 11 ǫ Q 10 − 12 10 − 13 10 − 14 10 − 15 OPEP Cooling: Raffelt Constraint OPEP Cooling [ Dent et al. (2012) ] 10 − 16 10 0 10 1 10 2 10 3 m γ Q [MeV]

  22. Dark Photon Constraint Rrapaj, Reddy arxiv:1511.09136 10 − 7 10 − 8 10 − 9 10 − 10 Emissivity ! 10 − 11 Improved nuclear ǫ Q physics ! 10 − 12 10 − 13 10 − 14 OPEP Cooling: Raffelt Constraint 10 − 15 OPEP Cooling [ Dent et al. (2012) ] SRA Cooling: Raffelt Constraint 10 − 16 10 0 10 1 10 2 10 3 m γ Q [MeV]

  23. Dark Photon Constraint Rrapaj, Reddy arxiv:1511.09136 10 − 7 10 − 8 10 − 9 10 − 10 Emissivity ! 10 − 11 Improved nuclear ǫ Q physics ! 10 − 12 10 − 13 OPEP Cooling: Raffelt Constraint 10 − 14 OPEP Cooling [ Dent et al. (2012) ] 10 − 15 SRA Cooling: Raffelt Constraint OPEP Trapping [ Dent et al. (2012) ] 10 − 16 10 0 10 1 10 2 10 3 m γ Q [MeV]

  24. Dark Photon Constraint Rrapaj, Reddy arxiv:1511.09136 10 − 7 10 − 8 10 − 9 10 − 10 Emissivity ! 10 − 11 Improved nuclear ǫ Q physics ! 10 − 12 10 − 13 OPEP Cooling: Raffelt Constraint OPEP Cooling [ Dent et al. (2012) ] 10 − 14 SRA Cooling: Raffelt Constraint OPEP Trapping [ Dent et al. (2012) ] 10 − 15 SRA Trapping: τ ( R S ) = 3 10 − 16 10 0 10 1 10 2 10 3 m γ Q [MeV]

  25. Dark Photon Constraint Rrapaj, Reddy arxiv:1511.09136 10 − 7 10 − 8 SN87a Excluded Region 10 − 9 ǫ Q 10 − 10 E = 10 19 erg/g/s SRA: ˙ 10 − 11 SRA Trapping: τ ( R S ) = 3 E = 8 × 10 22 erg/g/s [ Dent et al. (2012) ] OPEP: ˙ OPEP Trapping [ Dent et al. (2012) ] 10 − 12 10 0 10 1 10 2 10 3 m γ Q [MeV]

  26. What about the dark leptophobic photon ?! No Current Supernova constraint!

  27. Dark photon coupled only to baryonic current Rrapaj, Reddy arxiv:1511.09136 10 − 10 10 − 12 10 − 14 10 − 16 SN87a Excluded Region 10 − 18 α B 10 − 20 10 − 22 SRA: Cooling 10 − 24 SRA: Trapping Neutron Optics [Leeb et al. 1992] 10 − 26 Neutron Scattering [Barbieri & Ericson, 1975] 10 − 28 10 − 6 10 − 5 10 − 4 10 − 3 10 − 2 10 − 1 10 0 10 1 10 2 10 3 m γ B [MeV]

  28. So, did we ‘solve’ this issue?

  29. So, did we ‘solve’ this issue? NOPE

  30. Uncertainties in establishing constraints Scattering Rate: Bremsstrahlung ◮ SRA valid only for ω/ E CM ≪ 1 (perhaps effective field theories and two body currents) ◮ medium effects not included (rescattering, nucleon excitation lifetimes) ◮ ...

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend