nonlinear tools in the fractional setting and vice versa
play

Nonlinear tools in the fractional setting (and vice-versa) Giuseppe - PowerPoint PPT Presentation

Nonlinear tools in the fractional setting (and vice-versa) Giuseppe Mingione ICTP May 31, 2017 Giuseppe Mingione Nonlinear tools in the fractional setting (and vice-versa) Part 1: Local and nonlocal theories Part 1: Local Nonlinear


  1. Nonlinear tools in the fractional setting (and vice-versa) Giuseppe Mingione ICTP – May 31, 2017 Giuseppe Mingione Nonlinear tools in the fractional setting (and vice-versa)

  2. Part 1: Local and nonlocal theories Part 1: Local Nonlinear Potential Theory and other nonlinear tools Giuseppe Mingione Nonlinear tools in the fractional setting (and vice-versa)

  3. Local versions In bounded domains one uses � R | µ | ( B ̺ ( x )) d ̺ I µ β ( x , R ) := β ∈ (0 , n ] ̺ n − β ̺ 0 since � d | µ | ( y ) I µ β ( x , R ) � | x − y | n − β B R ( x ) = I β ( | µ | � B R ( x ))( x ) ≤ I β ( | µ | )( x ) for non-negative measures Giuseppe Mingione Nonlinear tools in the fractional setting (and vice-versa)

  4. Nonlinear potentials The nonlinear Wolff potential is defined by � R 1 p − 1 d ̺ � | µ | ( B ̺ ( x )) � W µ β, p ( x , R ) := β ∈ (0 , n / p ] ̺ n − β p ̺ 0 which for p = 2 reduces to the usual Riesz potential � R µ ( B ̺ ( x )) d ̺ I µ β ( x , R ) := β ∈ (0 , n ] ̺ n − β ̺ 0 The nonlinear Wolff potential plays in nonlinear potential theory the same role the Riesz potential plays in the linear one Giuseppe Mingione Nonlinear tools in the fractional setting (and vice-versa)

  5. The first nonlinear potential estimate Theorem (Kilpel¨ ainen & Mal´ y, Acta Math. 1994) If u solves − div ( | Du | p − 2 Du ) = µ then � 1 / ( p − 1) � � | u | p − 1 dy | u ( x ) | � W µ 1 , p ( x , R ) + − B R ( x ) holds Giuseppe Mingione Nonlinear tools in the fractional setting (and vice-versa)

  6. The first nonlinear potential estimate Theorem (Kilpel¨ ainen & Mal´ y, Acta Math. 1994) If u solves − div ( | Du | p − 2 Du ) = µ then � 1 / ( p − 1) � � | u | p − 1 dy | u ( x ) | � W µ 1 , p ( x , R ) + − B R ( x ) holds where � R � 1 / ( p − 1) d ̺ � | µ | ( B ̺ ( x )) W µ 1 , p ( x , R ) := ̺ n − p ̺ 0 Giuseppe Mingione Nonlinear tools in the fractional setting (and vice-versa)

  7. The first nonlinear potential estimate Theorem (Kilpel¨ ainen & Mal´ y, Acta Math. 1994) If u solves − div ( | Du | p − 2 Du ) = µ then � 1 / ( p − 1) � � | u | p − 1 dy | u ( x ) | � W µ 1 , p ( x , R ) + − B R ( x ) holds where � R � 1 / ( p − 1) d ̺ � | µ | ( B ̺ ( x )) W µ 1 , p ( x , R ) := ̺ n − p ̺ 0 For p = 2 we are back to the Riesz potential W µ 1 , p = I µ 2 - the above estimate is non-trivial already in this situation Giuseppe Mingione Nonlinear tools in the fractional setting (and vice-versa)

  8. Controlling the Wolff potential � ∞ � 1 / ( p − 1) d ̺ � | µ | ( B ̺ ( x )) � [ I β ( | µ | )] 1 / ( p − 1) � ̺ � I β ( x ) ̺ n − β p 0 The quantity in the right-hand side is usually called Havin-Mazya potential Giuseppe Mingione Nonlinear tools in the fractional setting (and vice-versa)

  9. A first gradient potential estimate Theorem (Min., JEMS 2011) When p = 2 , if u solves − div a ( Du ) = µ then � | Du ( x ) | � I | µ | 1 ( x , R ) + − | Du | dy B R ( x ) holds Giuseppe Mingione Nonlinear tools in the fractional setting (and vice-versa)

  10. A first gradient potential estimate Theorem (Min., JEMS 2011) When p = 2 , if u solves − div a ( Du ) = µ then � | Du ( x ) | � I | µ | 1 ( x , R ) + − | Du | dy B R ( x ) holds For solutions in W 1 , 1 ( R N ) we have � d | µ | ( y ) | Du ( x ) | � | x − y | n − 1 = I 1 ( | µ | )( x ) R n Giuseppe Mingione Nonlinear tools in the fractional setting (and vice-versa)

  11. The p � = 2 case: a long path towards optimality Theorem (Duzaar & Min., AJM 2011) When p ≥ 2 , if u solves − div a ( Du ) = µ then � | Du ( x ) | � W µ 1 / p , p ( x , R ) + − | Du | dy B R ( x ) holds Giuseppe Mingione Nonlinear tools in the fractional setting (and vice-versa)

  12. The p � = 2 case: a long path towards optimality Theorem (Duzaar & Min., AJM 2011) When p ≥ 2 , if u solves − div a ( Du ) = µ then � | Du ( x ) | � W µ 1 / p , p ( x , R ) + − | Du | dy B R ( x ) holds where � R � 1 / ( p − 1) d ̺ � | µ | ( B ̺ ( x )) W µ 1 / p , p ( x , R ) = ̺ n − 1 ̺ 0 Giuseppe Mingione Nonlinear tools in the fractional setting (and vice-versa)

  13. Indeed Theorem (Kuusi & Min., CRAS 2011 + ARMA 2013) If u solves − div ( | Du | p − 2 Du ) = µ then � p − 1 � � | Du ( x ) | p − 1 � I | µ | 1 ( x , R ) + − | Du | dy B R ( x ) holds Giuseppe Mingione Nonlinear tools in the fractional setting (and vice-versa)

  14. Indeed Theorem (Kuusi & Min., CRAS 2011 + ARMA 2013) If u solves − div ( | Du | p − 2 Du ) = µ then � p − 1 � � | Du ( x ) | p − 1 � I | µ | 1 ( x , R ) + − | Du | dy B R ( x ) holds The theorem still holds for general equations of the type − div a ( Du ) = µ The phenomenon is general: Baroni (Calc. Var. 2015) has given a far-reaching extension of this result to a family of very general operator with non-necessarily polynomial behaviour Giuseppe Mingione Nonlinear tools in the fractional setting (and vice-versa)

  15. A global estimate Theorem (Kuusi & Min., CRAS 2011 + ARMA 2013) If u solves − div ( | Du | p − 2 Du ) = µ and decays naturally, then � d | µ | ( y ) | Du ( x ) | p − 1 � | x − y | n − 1 = I 1 ( | µ | )( x ) R n Giuseppe Mingione Nonlinear tools in the fractional setting (and vice-versa)

  16. Nonlocal problems Part 2: Nonlocal Nonlinear Potential Theory Giuseppe Mingione Nonlinear tools in the fractional setting (and vice-versa)

  17. The classical fractional Laplacean ( −△ ) α u = f for 0 < s < 1 means that � ( −△ ) α u , ϕ � := � � [ u ( x ) − u ( y )][ ϕ ( x ) − ϕ ( y )] � dx dy = R n f ϕ dx | x − y | n +2 α R n R n for every ϕ ∈ C ∞ 0 ( R n ) Giuseppe Mingione Nonlinear tools in the fractional setting (and vice-versa)

  18. Nonlocal operators with measurable coefficients � � � R n [ u ( x ) − u ( y )][ ϕ ( x ) − ϕ ( y )] K ( x , y ) dx dy = R n f ϕ dx R n where 1 Λ ∀ x , y ∈ R n , x � = y Λ | x − y | n +2 α ≤ K ( x , y ) ≤ | x − y | n +2 α These correspond to linear elliptic equations of the type − div ( A ( x ) Du ) = f where A ( x ) is an elliptic matrix with measurable coefficients Giuseppe Mingione Nonlinear tools in the fractional setting (and vice-versa)

  19. Nonlinear nonlocal equations � � � R n Φ( u ( x ) − u ( y ))[ ϕ ( x ) − ϕ ( y )] K ( x , y ) dx dy = R n f ϕ dx R n where Φ( t ) t ≥ t 2 , | Φ( t ) | ≤ Λ | t | , ∀ t ∈ R These correspond to linear elliptic equations of the type − div a ( x , Du ) = f where z �→ a ( x , z ) is strictly monotone with quadratic growth Giuseppe Mingione Nonlinear tools in the fractional setting (and vice-versa)

  20. The nonlocal p -Laplacean operator � � � R n Φ( u ( x ) − u ( y ))[ ϕ ( x ) − ϕ ( y )] K ( x , y ) dx dy = R n f ϕ dx R n where this time 1 Λ Λ | x − y | n + p α ≤ K ( x , y ) ≤ | x − y | n + p α and Λ − 1 | t | p ≤ Φ( t ) t ≤ Λ | t | p Giuseppe Mingione Nonlinear tools in the fractional setting (and vice-versa)

  21. Nonlocal problems We consider the fractional p -Laplacean �−L p u , ϕ � � � R n | u ( x ) − u ( y ) | p − 2 [ u ( x ) − u ( y )][ ϕ ( x ) − ϕ ( y )] K ( x , y ) dx dy = R n � = R n f ϕ dx with 1 Λ Λ | x − y | n + p α ≤ K ( x , y ) ≤ | x − y | n + p α and p ≥ 2 for simplicity Giuseppe Mingione Nonlinear tools in the fractional setting (and vice-versa)

  22. This arises when minimizing fractional energies of the type � � R n | u ( x ) − u ( y ) | p K ( x , y ) dx dy v �→ R n Giuseppe Mingione Nonlinear tools in the fractional setting (and vice-versa)

  23. Nonlocal problems We consider the nonlocal Dirichlet problem � −L p u = 0 in Ω u = g on R n \ Ω where g ∈ W α, p ( R n ) Giuseppe Mingione Nonlinear tools in the fractional setting (and vice-versa)

  24. The Tail � 1 / ( p − 1) � | v ( x ) | p − 1 � r p α Tail( v ; x 0 , r ) := | x − x 0 | n + p α dx R n \ B r ( x 0 ) Observe that W α, p ( R n )-functions have finite tail. We can consider the tail space v ∈ L p − 1 L p − 1 p α ( R n ) := loc ( R n ) : � Tail( v ; z , r ) < ∞ ∀ z ∈ R n , ∀ r ∈ (0 , ∞ ) � and assume that g ∈ W α, p loc ( R n ) ∩ L p − 1 p α ( R n ) Giuseppe Mingione Nonlinear tools in the fractional setting (and vice-versa)

  25. The sup-bound for the nonlocal p -Laplacean Theorem (Di Castro & Kuusi & Palatucci, Ann. IHP 2014) Let v ∈ W α, p ( R n ) be a weak solution. Let B r ( x 0 ) ⊂ Ω ; then the following estimate holds: � 1 / p � � | v | p dx sup | v | ≤ c − + c Tail( v ; x 0 , r / 2) B r / 2 ( x 0 ) B r ( x 0 ) Giuseppe Mingione Nonlinear tools in the fractional setting (and vice-versa)

  26. General regularity theory Moreover, Di Castro & Kuusi & Palatucci also developed a remarkable regularity theory including local H¨ older continuity of such solutions and Harnack inequality (JFA 2014). Giuseppe Mingione Nonlinear tools in the fractional setting (and vice-versa)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend