fractional gaussian noise fractional gaussian noise
play

Fractional Gaussian Noise, Fractional Gaussian Noise, Subdiffusion - PowerPoint PPT Presentation

Fractional Gaussian Noise, Fractional Gaussian Noise, Subdiffusion and Stochastic and Stochastic Subdiffusion Networks in Biophysics Networks in Biophysics Samuel Kou Department of Statistics Harvard University Single-Molecule Experiments


  1. Fractional Gaussian Noise, Fractional Gaussian Noise, Subdiffusion and Stochastic and Stochastic Subdiffusion Networks in Biophysics Networks in Biophysics Samuel Kou Department of Statistics Harvard University

  2. Single-Molecule Experiments � Statistics & probability experienced fundamental change in the past 20 years � Biophysics & chemistry also witnessed dramatic progress: single-molecule experiments � Using nanotechnology, scientists can study biological processes on a single-molecule basis (eg. enzymatic kinetics, protein/DNA dynamics) “Seeing images of single atoms is a religious experience” --- Richard Feynman

  3. New Aspects for Scientific Discovery � Can measure molecular properties individually , instead of inferring from population statistics � If the reaction/kinetic time is slow, ensemble experiments become almost impossible due to the difficulty of synchronization � Single-molecule trajectory provides detailed dynamic information � Understanding the dynamics of individual is essential to unlock their biofunctions

  4. Statistical & Probabilistic Challenges Statistical & Probabilistic Challenges � Require new stochastic modeling Subdiffusion Enzymatic reaction � Data are noisier, and efficient inference methodology is needed

  5. Brownian diffusion � Since Einstein's 1905 paper, the theory of Brownian diffusion has revolutionized not only natural sciences but also social sciences. � Brownian motion described by Langevin equation dv = ζ − + m t v F ( t ) t dt where F ( t ) is white noise process satisfying ′ ′ = ζ ⋅ δ − E F t F t k T t t { ( ) ( )} ( ) B by fluctuation-dissipation theorem. � Solution: Ornstein-Uhlenbeck process v ( t ) Gaussian t � Displacement (location) = x t ∫ v s ds ( ) ( ) 0 k T ∼ E x t 2 B t t { ( ) } 2 , for large ζ --- Corner stone for statistical mechanics

  6. Subdiffusion � Brownian diffusion, however, cannot explain so called subdiffusion: α ∝ < α < E x t 2 t { ( ) } , 0 1 � Distance fluctuation within a single protein molecule (Yang et al . 2003, Science ; Min et al . 2005, Physical Review Letters ). � Need tools beyond Langevin equation and BM.

  7. Single-molecule fluorescence experiment on protein complex � Yang et al. (2003, Science ) studied a protein-enzyme complex Fre , catalyzes the reduction of flavin � Fre contains two substructures: a flavin adenine dinucleotide (FAD) and a tyrosine (Tyr). � Fluorescence lifetime of FAD varies Tyr due to distance fluctuation � Relationship between fluorescence FAD lifetime and distance − β + X X γ − = − ( ) 1 t k e 1 ( ) [ eq t ] 0

  8. − − ∆ γ ∆ γ Autocorrelation function E 1 1 t { ( 0 ) ( )} ∆ γ − = γ − − γ − 1 t 1 t E 1 t ( ) ( ) { ( )} 0.06 • Need tools beyond Langevin equation and BM. 0.04 C γ ( t ) • The model: Generalized Langevin equation with 0.02 fractional Gaussian noise (GLE with fGn). 0.00 0.001 0.01 0.1 1 10 100 1000 time (second)

  9. Generalized Langevin Equation with fGn dv = ζ − + � Langevin equation m t v F ( t ) t dt dv t ∫ ∞ = − ζ − + m t v K t u du G � Generalized Langevin equation ( ) , u t dt − � Fluctuation-dissipation theorem links memory kernel K ( t ) with fluctuating force = ζ ⋅ − E G G k T K t s { } ( ) t s B � Key question: How to introduce the noise structure? � Understand the white noise: White noise is the F = derivative of the Wiener process d B t t dt � B ( t ) is the unique process: (i) Gaussian, (ii) independent increment, (iii) stationary increment, (iv) self-similar

  10. � Natural generalization: (i) Gaussian (ii) stationary increment (iii) self-similar. � The ONLY candidate fBM B ( H ) ( t ) , 0 < H < 1 = H E B ( ) , and covariance function { } 0 t H H H 2 2 2 = + − − ≥ H H E B ( ) B ( ) t s t s t s { } ( ) / 2 for , 0 . t s when H = 1/2, reduces to B ( t ). H ( ) = dB H � Fractional Gaussian noise : F ( ) t ( ) t dt Gaussian & stationary. � Memory kernel = H H K t E F ( ) F ( ) t ( ) { ( 0 ) ( )} H − = − ≠ H H H t 2 2 t ( 2 1 ) | | , for 0 � Spectral density = ∫ ~ ∞ ϖ − ϖ = Γ + π ϖ it H K e K t dt H H 1 2 ( ) ( ) ( 2 1 ) sin( ) | | H H − ∞

  11. Toward subdiffusion � Applying Fourier transform on dv t ∫ ∞ ( H = − ζ − + ) m t v K t u du F ( ) , u H t dt − v ( t ) Gaussian E { v ( t )} = 0, 1 ∞ ~ ∫ = = ϖ ϖ ϖ it C t E v v t e C d ( ) { ( 0 ) ( )} ( ) π − ∞ 2 ~ ζ ϖ k T K ~ ( ) ϖ = C B H ( ) ~ 2 + ζ ϖ − ϖ K i m ( ) H ( ) � For displacement = t X t v s ds ∫ ( ) 0 t t ∫ ∫ = E X t 2 E v s v u du ds { ( ) } { ( ) ( )} 0 0 π k T H 2 sin( 2 ) − − H ∝ H E X t 2 B t 2 2 t 2 2 { ( ) } ~ ζ π − − H H H ( 2 1 )( 2 2 ) � H > 1/2 leads to subdiffusion!

  12. Harmonic potential dv t ∫ ∞ ( H = − ζ − + ) � GLE: m t v K t u du F ( ) , u H t dt − � For external field U ( x ) , changes to t ∫ ∞ & & & ′ = − ζ − − + H m X t X u K t u du U X F ( ) t ( ) ( ) ( ) ( ) ( ) H t − & & = t = dv t where , . ( ) X t v s ds X t ∫ ( ) ( ) ( ) dt 0 = ω For harmonic potential U x m x 2 2 1 ( ) 2 t ∫ ∞ & & & = − ζ − − ω + H m X t X u K t u du m 2 X t F ( ) t ( ) ( ) ( ) ( ) ( ) H − � Fourier method gives E { X ( t ) X ( s )}, E { X ( t ) v ( s )} Overdamped condition � Acceleration negligible, GLE reads t ∫ ∞ & ω = − ζ − + H m 2 X t X u K t u du F ( ) t ( ) ( ) ( ) ( ) H −

  13. t ∫ ∞ & ω = − ζ − + H m 2 X t X u K t u du F ( ) t ( ) ( ) ( ) ( ) H − � Solution: X ( t ) stationary Gaussian E { X ( t )}=0 = C t E X X t ( ) { ( 0 ) ( )} xx ω k T m 2 − = − H B E t 2 2 ( ) − H ω ζ Γ + 2 2 m H 2 ( 2 1 ) ∞ = ∑ Γ α + k E z z k where ( ) / ( 1 ) α = k 0 � For all H , k T = = C E X X B ( 0 ) { ( 0 ) ( 0 )} xx ω m 2 the thermal equilibrium value. � For H = 1/2, recovers the Brownian diffusion result k T 2 ω − m t 2 = = C t E X X t B e ζ ( ) { ( 0 ) ( )} xx ω m 2

  14. The Hamiltonian for GLE with fGn � GLE with fGn can be derived from the interaction between a particle and a harmonic oscillator heat bath. 1 1 = + ω H s mv 2 m 2 x 2 � Start from system Hamiltonian 2 2 p 2 1 = + ω = m 2 x 2 p mv , and the heat bath Hamiltonian m 2 2 ⎛ ⎞ γ p 2 = ∑ 1 ⎜ ⎟ j j + ω − H m 2 q x 2 ( ) ⎜ ⎟ B b j j ω m 2 2 2 ⎝ ⎠ j b j where m b the media molecule mass, ω j individual frequency, and γ j coupling strength of j th oscillator. � Equation of motion for H s + H B ∂ ∂ dx dp = + = − + H H H H ( ), ( ) s B s B ∂ ∂ dt p dt x dq ∂ dp ∂ j = + j = − + H H H H ( ), ( ) s B s B ∂ ∂ dt p dt q j j

  15. � Solve it. Leads to (i) GLE t ∫ ∞ & & & = − ζ − − ω + m X t X u K t u du m 2 X t F t ( ) ( ) ( ) ( ) ( ) − where γ 2 γ ϖ 2 ( ) ∑ ∫ j = ω = ϖ ϖ ϖ K t m t m t g d ( ) cos cos( ) ( ) b j b ω ϖ 2 2 j j γ γ ∑ ∑ j j = γ − ω + ω F t m q x t p t ( ) ( ( 0 ) ( 0 )) cos( ) ( 0 ) sin( ) b j j j j j ω ω 2 j j j j and (ii) the fluctuation-dissipation theorem = ζ ⋅ − E F F k T K t s { } ( ) t s B � Furthermore, if we take  2    g     1  Γ  2 H  1  sin  H   |  | 3 − 2 H fGn memory kernel K  t   H  2 H − 1  t 2 H − 2

  16. Back to experiment Fluorescence lifetime of FAD depends on the distance between Tyr FAD and Tyr − β + X X γ − = − ( ) FAD 1 t k e 1 ( ) [ eq t ] 0 Model X ( t ) by GLE with fGn under harmonic potential easy calculation of lifetime autocorrelation β + β 2 − − X C β 2 γ γ = − 2 ( 0 ) C t Cov 1 1 t k 2 e e ( ) eq xx { ( 0 ), ( )} ( 1 ) xx 0

  17. Fitting experimental autocorrelation 0.06 ζ k B T 2 β 2 H ω 2 ω m m 0.04 C γ ( t ) 0.74 0.40 0.81 0.02 0.00 0.001 0.01 0.1 1 10 100 1000 Kou and Xie, Phys. Rev. Lett. , 93 , time (second) 180603 (2004).

  18. Higher order autocorrelation functions − − − δγ = γ − 〈 γ 〉 1 t 1 t 1 t ( ) : ( ) ( ) 1.0 〈δγ −1 (0) δγ −1 (t) δγ −1 (2t) δγ −1 (3t) 〉 〈δγ −1 (0) δγ −1 (t) δγ −1 (2t) 〉 5 〈γ −1 〉 3 〈γ −1 〉 3 0.8 4 Three-point Four-point 0.6 3 0.4 2 0.2 1 0.0 0 0.001 0.01 0.1 1 10 0.001 0.01 0.1 1 10 t (sec) t (sec) ζ k B T 2 β 2 H Same parameters: ω 2 ω m m 0.74 0.40 0.81

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend