enzymatic reactions
play

Enzymatic Reactions 2 Many ways of illustrating the steps - PDF document

12/8/2011 Updated: 8 December 2011 CEE 670 Kinetics Lecture #9 1 Print version CEE 670 TRANSPORT PROCESSES IN ENVIRONMENTAL AND WATER RESOURCES ENGINEERING Kinetics Lecture #9 Enzyme Kinetics: Basic Models Kinetic Theory: Encounter &


  1. 12/8/2011 Updated: 8 December 2011 CEE 670 Kinetics Lecture #9 1 Print version CEE 670 TRANSPORT PROCESSES IN ENVIRONMENTAL AND WATER RESOURCES ENGINEERING Kinetics Lecture #9 Enzyme Kinetics: Basic Models Kinetic Theory: Encounter & Transition Model & IS Effects Clark, 9.6 Brezonik, pp. 130-158 Enzyme Kinetics David A. Reckhow Enzymatic Reactions 2  Many ways of illustrating the steps  Substrate(s) bond to active site  Product(s) form via transition state  Product(s) are released CEE 670 Kinetics Lecture #9 David A. Reckhow 1

  2. 12/8/2011 Note that some Basic Enzyme Kinetics references use k 2 for k -1 , and k 3 for k 2 3  Irreversible k 1 k 2 → E + S ES  E + P ← k- 1  Single intermediate  The overall rate is determined by the RLS, k 2 d [ S ] d [ P ]     r k 2 ES [ ] dt dt  But we don’t know [ES], so we can get it by the SS mass balance d [ ES ]     0 k [ E ][ S ] k [ ES ] k [ ES ]  1 1 2 dt  Again, we only know [E o ] or [E tot ], not free [E], so:       0 k [ E ] [ ES ] [ S ] k [ ES ] k [ ES ]  1 o 1 2 CEE 670 Kinetics Lecture #9 David A. Reckhow Reactants, products and Intermediates 4  Simple Progression of components for simple single intermediate enzyme reaction  Shaded block shows steady state intermediates  Assumes [S]>>[E] t  From Segel, 1975; Enzyme Kinetics CEE 670 Kinetics Lecture #9 David A. Reckhow 2

  3. 12/8/2011 Basic Enzyme Kinetics II 5  And solving for [ES],    k [ ES ][ S ] k [ ES ] k [ ES ] k [ E ][ S ]  1 1 2 1 o k [ E ][ S ]  1 o [ ES ]   k [ S ] k k  1 1 2 [ E ][ S ]  o [ ] ES   k k  [ S ] 1 2 k 1 CEE 670 Kinetics Lecture #9 David A. Reckhow Michaelis-Menten 6  Irreversible k 1 k 2 → E + S ES  E + P ← k- 1  Single intermediate d [ P ]   [ ] r k 2 ES dt [ E ][ S ]  o [ ES ]   k k  [ S ] 1 2 k 1 d [ P ] k [ E ][ S ] r [ S ]    2 o max r    k k dt  K [ S ] [ S ] 1 2 k s 1 CEE 670 Kinetics Lecture #9 David A. Reckhow 3

  4. 12/8/2011 Michaelis Menten Kinetics 7  Classical substrate plot rmax 100 80 Reaction Rate 60 0.5r max 40 K s d [ P ] r [ S ]   max r s  dt K [ S ] 20 0 0 20 40 60 80 100 120 CEE 670 Kinetics Lecture #9 David A. Reckhow Substrate Concentration Substrate and growth 8 d [ P ] d [ S ] 1 dX  If we consider Y     r dt dt Y dt  We can define a microorganism-specific substrate utilization rate, U dX  r   dt  U YX X Y  And the maximum rates are then    max U k max Y  1 d [ S ] k [ S ] 1 d [ X ] [ S ]      max U and s  s  X dt K [ S ] X dt K [ S ] CEE 670 Kinetics Lecture #9 David A. Reckhow 4

  5. 12/8/2011 Linearizations 9  Lineweaver-Burke  Double reciprocal plot Wikipedia version Voet & Voet version CEE 670 Kinetics Lecture #9 David A. Reckhow 10  das CEE 670 Kinetics Lecture #9 David A. Reckhow 5

  6. 12/8/2011 3 types 11  Lineweaver Burk  Hanes  Eadie-Hofstee CEE 670 Kinetics Lecture #9 David A. Reckhow Compare predictions 12  ad CEE 670 Kinetics Lecture #9 David A. Reckhow 6

  7. 12/8/2011 k 1 k 2 k 3 → E + S ES  EP 2  2E + P 2 Multi-step ← k- 1 P 1 13  Double intermediate  Also gives: d [ P ] r [ S ]   max r s  dt K [ S ]  But now:    k k [ E ] k k k    2 3 o 3 1 2 r K s   1   max k k k k k 2 3 2 3  Note what happens when: k 3 >> k 2 CEE 670 Kinetics Lecture #9 David A. Reckhow Activation Energy 14  Activation Energy must always be positive  Unlike ∆ H, which may be positive or negative  Differing reaction rates Activated Complex Activated Complex E a E a Energy Energy reactants reactants       E H E H f f products products Reaction Coordinate Reaction Coordinate CEE 670 Kinetics Lecture #9 David A. Reckhow 7

  8. 12/8/2011 Encounter Theory I 15  Uncharged Solutes  Nature of diffusion in water  Encounter within a solvent cage  Random diffusion occurs through elementary jumps of distance   Molecular Molecular 2 r diameter radius Average time between jumps  2   For a continuous medium: 2  2 or   D  2 D  For a semi-crystalline structure:  6  2  2 or   D  6 D For water, D ~ 1x10 -5 cm 2 s -1 , and � = 4x10 -8 cm, so  ~ 2.5x10 -11 s If time between vibrations is ~ 1.5x10 -13 s, then the average water molecule vibrates 150 times (2.5x10 -11 /1.5x10 -13 ) in its solvent cage before jumping to the next one. CEE 670 Kinetics Lecture #9 David A. Reckhow Encounter Theory II 16  Probability of Encounter  If A and B are the same size as water  They will have 12 nearest neighbors  Probability that “A” will encounter “B” in a solvent cage of 12 neighbors is:  Proportional to the mole fraction of “B”  P 6 X With each new jump, “A’ has 6 new neighbors B A B Where: n # molecules of “B” per cm 3  B X   B   1   3 # molecules of solvent per cm 3   Molecular volume (cm 3 ) Geometric packing factor CEE 670 Kinetics Lecture #9 David A. Reckhow 8

  9. 12/8/2011 Encounter Theory III 17  And combining the rate of movement with the probability of encountering “B”, we get an expression for the rate of   encounter with “B” 1  6 D P   2 A B AB  Then substituting in for the probability  3 6 D ( 6 n ) 1  B   2 AB   36 n D B  For water,  =0.74, and the effective diffusion coefficient, D AB = D A + D B , and � =r AB , the sum of the molecular radii  Then we get: 1  25 r D n  AB AB B AB # of encounters/sec for each molecule of “A ” CEE 670 Kinetics Lecture #9 David A. Reckhow Encounter Theory IV 18  Now the total # of encounters between “A” and “B” per cm 3 per second is: n  25 A r D n n  AB AB A B AB  In terms of moles of encounters (encounter frequency) this becomes:     3 3 cm cm 1000 n 1000       L A L Z 25 r D n n    e , AB   AB AB A B N molecules  N molecules  o Mole o Mole  25 r D [ A ] n AB AB B n B =[B]/N 0 /1000 L/cm 3 cm 2 s -1 M -1 s -1 cm #/Mole   2 Z 2 . 5 x 10 r D N [ A ][ B ] e , AB AB AB 0 CEE 670 Kinetics Lecture #9 David A. Reckhow 9

  10. 12/8/2011 Encounter Theory V 19  Frequency Factor   2 Z 2 . 5 x 10 r D N [ A ][ B ] e , AB AB AB 0 A  When E a = 0, k=A Activated Complex  E a  E a / RT k Ae Energy reactants products Reaction Coordinate CEE 670 Kinetics Lecture #9 David A. Reckhow Transition State Theory I 20  Consider the simple bimolecular reaction    k A B C  Even though it is an elementary reaction, we can break it down into two steps       k A B AB C “Activated Complex”   Where the first “equilibrium” is:   [ AB ] K   [ A ][ B ]  [ AB ] K [ A ][ B ] Activated  So the forward rate is: Complex E a d [ C ]       k [ AB ] k K [ A ][ B ] Energy reactants dt products CEE 670 Kinetics Lecture #9 David A. Reckhow Reaction Coordinate 10

  11. 12/8/2011 Transition State Theory II 21  Now the transition state is just one bond vibration away from conversion to products Frequency of vibration (s -1 ) E vib    Planks Law: h vibrational Planck’s constant (6.62 x 10 -27 ergs·s) energy  Bond energy must be in the thermal region: Temperature (ºK) E bond  Bond kT energy Boltzman constant (1.3807×10 − 16 ergs ºK -1 )  So equating, we get:   kT   h kT h  And since conversion occurs on the next vibration: kT      k k K K h CEE 670 Kinetics Lecture #9 David A. Reckhow Transition State Theory III 22  Now from basic thermodynamics:   G o    G o  RT ln K or K e RT  And also      G o H T S  S e    So: H  K e R RT     kT   And combining: S H  k e R e RT h      Recall:    E H P V H      kT E S a  And substituting back in:    k e R e RT   h A CEE 670 Kinetics Lecture #9 David A. Reckhow 11

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend