nonlinear price impact and portfolio choice
play

Nonlinear Price Impact and Portfolio Choice Paolo Guasoni 1 , 2 Marko - PowerPoint PPT Presentation

Model Results Heuristics Nonlinear Price Impact and Portfolio Choice Paolo Guasoni 1 , 2 Marko Weber 2 , 3 Boston University 1 Dublin City University 2 Scuola Normale Superiore 3 Quantitative Finance Seminar Fields Institute, Toronto, January 28


  1. Model Results Heuristics This Talk • Inputs • Price exogenous. Geometric Brownian Motion. • Constant relative risk aversion and long horizon. • Nonlinear price impact: trading rate one-percent highers means impact α -percent higher. • Outputs • Optimal trading policy and welfare. • High liquidity asymptotics. • Linear impact and bid-ask spreads as extreme cases. • Focus is on temporary price impact: • No permanent impact as in Huberman and Stanzl (2004) • No transient impact as in Obizhaeva and Wang (2006) or Gatheral (2010).

  2. Model Results Heuristics This Talk • Inputs • Price exogenous. Geometric Brownian Motion. • Constant relative risk aversion and long horizon. • Nonlinear price impact: trading rate one-percent highers means impact α -percent higher. • Outputs • Optimal trading policy and welfare. • High liquidity asymptotics. • Linear impact and bid-ask spreads as extreme cases. • Focus is on temporary price impact: • No permanent impact as in Huberman and Stanzl (2004) • No transient impact as in Obizhaeva and Wang (2006) or Gatheral (2010).

  3. Model Results Heuristics This Talk • Inputs • Price exogenous. Geometric Brownian Motion. • Constant relative risk aversion and long horizon. • Nonlinear price impact: trading rate one-percent highers means impact α -percent higher. • Outputs • Optimal trading policy and welfare. • High liquidity asymptotics. • Linear impact and bid-ask spreads as extreme cases. • Focus is on temporary price impact: • No permanent impact as in Huberman and Stanzl (2004) • No transient impact as in Obizhaeva and Wang (2006) or Gatheral (2010).

  4. Model Results Heuristics This Talk • Inputs • Price exogenous. Geometric Brownian Motion. • Constant relative risk aversion and long horizon. • Nonlinear price impact: trading rate one-percent highers means impact α -percent higher. • Outputs • Optimal trading policy and welfare. • High liquidity asymptotics. • Linear impact and bid-ask spreads as extreme cases. • Focus is on temporary price impact: • No permanent impact as in Huberman and Stanzl (2004) • No transient impact as in Obizhaeva and Wang (2006) or Gatheral (2010).

  5. Model Results Heuristics This Talk • Inputs • Price exogenous. Geometric Brownian Motion. • Constant relative risk aversion and long horizon. • Nonlinear price impact: trading rate one-percent highers means impact α -percent higher. • Outputs • Optimal trading policy and welfare. • High liquidity asymptotics. • Linear impact and bid-ask spreads as extreme cases. • Focus is on temporary price impact: • No permanent impact as in Huberman and Stanzl (2004) • No transient impact as in Obizhaeva and Wang (2006) or Gatheral (2010).

  6. Model Results Heuristics This Talk • Inputs • Price exogenous. Geometric Brownian Motion. • Constant relative risk aversion and long horizon. • Nonlinear price impact: trading rate one-percent highers means impact α -percent higher. • Outputs • Optimal trading policy and welfare. • High liquidity asymptotics. • Linear impact and bid-ask spreads as extreme cases. • Focus is on temporary price impact: • No permanent impact as in Huberman and Stanzl (2004) • No transient impact as in Obizhaeva and Wang (2006) or Gatheral (2010).

  7. Model Results Heuristics This Talk • Inputs • Price exogenous. Geometric Brownian Motion. • Constant relative risk aversion and long horizon. • Nonlinear price impact: trading rate one-percent highers means impact α -percent higher. • Outputs • Optimal trading policy and welfare. • High liquidity asymptotics. • Linear impact and bid-ask spreads as extreme cases. • Focus is on temporary price impact: • No permanent impact as in Huberman and Stanzl (2004) • No transient impact as in Obizhaeva and Wang (2006) or Gatheral (2010).

  8. Model Results Heuristics Market • Brownian Motion ( W t ) t ≥ 0 with natural filtration ( F t ) t ≥ 0 . • Best quoted price of risky asset. Price for an infinitesimal trade. dS t = µ dt + σ dW t S t • Trade ∆ θ shares over time interval ∆ t . Order filled at price α � � � ∆ θ t S t � ˜ sgn ( ˙ � � S t (∆ θ ) := S t 1 + λ θ ) � � ∆ tX t � � where X t is investor’s wealth. • λ measures illiquidity. 1 /λ market depth. Like Kyle’s (1985) lambda. • Price worse for larger quantity | ∆ θ | or shorter execution time ∆ t . Price linear in quantity, inversely proportional to execution time. • Impact of dollar trade S t ∆ θ declines as large investor’s wealth increases. • Makes model scale-invariant. Doubling wealth, and all subsequent trades, doubles final payoff exactly.

  9. Model Results Heuristics Market • Brownian Motion ( W t ) t ≥ 0 with natural filtration ( F t ) t ≥ 0 . • Best quoted price of risky asset. Price for an infinitesimal trade. dS t = µ dt + σ dW t S t • Trade ∆ θ shares over time interval ∆ t . Order filled at price α � � � ∆ θ t S t � ˜ sgn ( ˙ � � S t (∆ θ ) := S t 1 + λ θ ) � � ∆ tX t � � where X t is investor’s wealth. • λ measures illiquidity. 1 /λ market depth. Like Kyle’s (1985) lambda. • Price worse for larger quantity | ∆ θ | or shorter execution time ∆ t . Price linear in quantity, inversely proportional to execution time. • Impact of dollar trade S t ∆ θ declines as large investor’s wealth increases. • Makes model scale-invariant. Doubling wealth, and all subsequent trades, doubles final payoff exactly.

  10. Model Results Heuristics Market • Brownian Motion ( W t ) t ≥ 0 with natural filtration ( F t ) t ≥ 0 . • Best quoted price of risky asset. Price for an infinitesimal trade. dS t = µ dt + σ dW t S t • Trade ∆ θ shares over time interval ∆ t . Order filled at price α � � � ∆ θ t S t � ˜ sgn ( ˙ � � S t (∆ θ ) := S t 1 + λ θ ) � � ∆ tX t � � where X t is investor’s wealth. • λ measures illiquidity. 1 /λ market depth. Like Kyle’s (1985) lambda. • Price worse for larger quantity | ∆ θ | or shorter execution time ∆ t . Price linear in quantity, inversely proportional to execution time. • Impact of dollar trade S t ∆ θ declines as large investor’s wealth increases. • Makes model scale-invariant. Doubling wealth, and all subsequent trades, doubles final payoff exactly.

  11. Model Results Heuristics Market • Brownian Motion ( W t ) t ≥ 0 with natural filtration ( F t ) t ≥ 0 . • Best quoted price of risky asset. Price for an infinitesimal trade. dS t = µ dt + σ dW t S t • Trade ∆ θ shares over time interval ∆ t . Order filled at price α � � � ∆ θ t S t � ˜ sgn ( ˙ � � S t (∆ θ ) := S t 1 + λ θ ) � � ∆ tX t � � where X t is investor’s wealth. • λ measures illiquidity. 1 /λ market depth. Like Kyle’s (1985) lambda. • Price worse for larger quantity | ∆ θ | or shorter execution time ∆ t . Price linear in quantity, inversely proportional to execution time. • Impact of dollar trade S t ∆ θ declines as large investor’s wealth increases. • Makes model scale-invariant. Doubling wealth, and all subsequent trades, doubles final payoff exactly.

  12. Model Results Heuristics Market • Brownian Motion ( W t ) t ≥ 0 with natural filtration ( F t ) t ≥ 0 . • Best quoted price of risky asset. Price for an infinitesimal trade. dS t = µ dt + σ dW t S t • Trade ∆ θ shares over time interval ∆ t . Order filled at price α � � � ∆ θ t S t � ˜ sgn ( ˙ � � S t (∆ θ ) := S t 1 + λ θ ) � � ∆ tX t � � where X t is investor’s wealth. • λ measures illiquidity. 1 /λ market depth. Like Kyle’s (1985) lambda. • Price worse for larger quantity | ∆ θ | or shorter execution time ∆ t . Price linear in quantity, inversely proportional to execution time. • Impact of dollar trade S t ∆ θ declines as large investor’s wealth increases. • Makes model scale-invariant. Doubling wealth, and all subsequent trades, doubles final payoff exactly.

  13. Model Results Heuristics Market • Brownian Motion ( W t ) t ≥ 0 with natural filtration ( F t ) t ≥ 0 . • Best quoted price of risky asset. Price for an infinitesimal trade. dS t = µ dt + σ dW t S t • Trade ∆ θ shares over time interval ∆ t . Order filled at price α � � � ∆ θ t S t � ˜ sgn ( ˙ � � S t (∆ θ ) := S t 1 + λ θ ) � � ∆ tX t � � where X t is investor’s wealth. • λ measures illiquidity. 1 /λ market depth. Like Kyle’s (1985) lambda. • Price worse for larger quantity | ∆ θ | or shorter execution time ∆ t . Price linear in quantity, inversely proportional to execution time. • Impact of dollar trade S t ∆ θ declines as large investor’s wealth increases. • Makes model scale-invariant. Doubling wealth, and all subsequent trades, doubles final payoff exactly.

  14. Model Results Heuristics Market • Brownian Motion ( W t ) t ≥ 0 with natural filtration ( F t ) t ≥ 0 . • Best quoted price of risky asset. Price for an infinitesimal trade. dS t = µ dt + σ dW t S t • Trade ∆ θ shares over time interval ∆ t . Order filled at price α � � � ∆ θ t S t � ˜ sgn ( ˙ � � S t (∆ θ ) := S t 1 + λ θ ) � � ∆ tX t � � where X t is investor’s wealth. • λ measures illiquidity. 1 /λ market depth. Like Kyle’s (1985) lambda. • Price worse for larger quantity | ∆ θ | or shorter execution time ∆ t . Price linear in quantity, inversely proportional to execution time. • Impact of dollar trade S t ∆ θ declines as large investor’s wealth increases. • Makes model scale-invariant. Doubling wealth, and all subsequent trades, doubles final payoff exactly.

  15. Model Results Heuristics Alternatives? • Alternatives: quantities ∆ θ , or share turnover ∆ θ/θ . Consequences? • Quantities ( ∆ θ ): Kyle (1985), Bertsimas and Lo (1998), Almgren and Chriss (2000), Schied and Shoneborn (2009), Garleanu and Pedersen (2011) S t (∆ θ ) := S t + λ ∆ θ ˜ ∆ t • Price impact independent of price. Not invariant to stock splits! • Suitable for short horizons (liquidation) or mean-variance criteria. • Share turnover: Stationary measure of trading volume (Lo and Wang, 2000). Observable. � 1 + λ ∆ θ � ˜ S t (∆ θ ) := S t θ t ∆ t • Problematic. Infinite price impact with cash position.

  16. Model Results Heuristics Alternatives? • Alternatives: quantities ∆ θ , or share turnover ∆ θ/θ . Consequences? • Quantities ( ∆ θ ): Kyle (1985), Bertsimas and Lo (1998), Almgren and Chriss (2000), Schied and Shoneborn (2009), Garleanu and Pedersen (2011) S t (∆ θ ) := S t + λ ∆ θ ˜ ∆ t • Price impact independent of price. Not invariant to stock splits! • Suitable for short horizons (liquidation) or mean-variance criteria. • Share turnover: Stationary measure of trading volume (Lo and Wang, 2000). Observable. � 1 + λ ∆ θ � ˜ S t (∆ θ ) := S t θ t ∆ t • Problematic. Infinite price impact with cash position.

  17. Model Results Heuristics Alternatives? • Alternatives: quantities ∆ θ , or share turnover ∆ θ/θ . Consequences? • Quantities ( ∆ θ ): Kyle (1985), Bertsimas and Lo (1998), Almgren and Chriss (2000), Schied and Shoneborn (2009), Garleanu and Pedersen (2011) S t (∆ θ ) := S t + λ ∆ θ ˜ ∆ t • Price impact independent of price. Not invariant to stock splits! • Suitable for short horizons (liquidation) or mean-variance criteria. • Share turnover: Stationary measure of trading volume (Lo and Wang, 2000). Observable. � 1 + λ ∆ θ � ˜ S t (∆ θ ) := S t θ t ∆ t • Problematic. Infinite price impact with cash position.

  18. Model Results Heuristics Alternatives? • Alternatives: quantities ∆ θ , or share turnover ∆ θ/θ . Consequences? • Quantities ( ∆ θ ): Kyle (1985), Bertsimas and Lo (1998), Almgren and Chriss (2000), Schied and Shoneborn (2009), Garleanu and Pedersen (2011) S t (∆ θ ) := S t + λ ∆ θ ˜ ∆ t • Price impact independent of price. Not invariant to stock splits! • Suitable for short horizons (liquidation) or mean-variance criteria. • Share turnover: Stationary measure of trading volume (Lo and Wang, 2000). Observable. � 1 + λ ∆ θ � ˜ S t (∆ θ ) := S t θ t ∆ t • Problematic. Infinite price impact with cash position.

  19. Model Results Heuristics Alternatives? • Alternatives: quantities ∆ θ , or share turnover ∆ θ/θ . Consequences? • Quantities ( ∆ θ ): Kyle (1985), Bertsimas and Lo (1998), Almgren and Chriss (2000), Schied and Shoneborn (2009), Garleanu and Pedersen (2011) S t (∆ θ ) := S t + λ ∆ θ ˜ ∆ t • Price impact independent of price. Not invariant to stock splits! • Suitable for short horizons (liquidation) or mean-variance criteria. • Share turnover: Stationary measure of trading volume (Lo and Wang, 2000). Observable. � 1 + λ ∆ θ � ˜ S t (∆ θ ) := S t θ t ∆ t • Problematic. Infinite price impact with cash position.

  20. Model Results Heuristics Alternatives? • Alternatives: quantities ∆ θ , or share turnover ∆ θ/θ . Consequences? • Quantities ( ∆ θ ): Kyle (1985), Bertsimas and Lo (1998), Almgren and Chriss (2000), Schied and Shoneborn (2009), Garleanu and Pedersen (2011) S t (∆ θ ) := S t + λ ∆ θ ˜ ∆ t • Price impact independent of price. Not invariant to stock splits! • Suitable for short horizons (liquidation) or mean-variance criteria. • Share turnover: Stationary measure of trading volume (Lo and Wang, 2000). Observable. � 1 + λ ∆ θ � ˜ S t (∆ θ ) := S t θ t ∆ t • Problematic. Infinite price impact with cash position.

  21. Model Results Heuristics Wealth and Portfolio • Continuous time: cash position α � 1 + α � � � � � � � ˙ S t ˙ ˙ θ t S t sgn ( ˙ θ t θ t S t dC t = − S t 1 + λ θ ) d θ t = − X t + λ X t dt � � � � X t X t � � � � ˙ θ t S t • Trading volume as wealth turnover u t := X t . Amount traded in unit of time, as fraction of wealth. • Dynamics for wealth X t := θ t S t + C t and risky portfolio weight Y t := θ t S t X t dX t = Y t ( µ dt + σ dW t ) − λ | u t | 1 + α dt X t dY t = ( Y t ( 1 − Y t )( µ − Y t σ 2 ) + ( u t + λ Y t | u t | 1 + α )) dt + σ Y t ( 1 − Y t ) dW t • Illiquidity... • ...reduces portfolio return ( − λ u 1 + α ). t Turnover effect quadratic: quantities times price impact. • ...increases risky weight ( λ Y t u 1 + α ). Buy: pay more cash. Sell: get less. t Turnover effect linear in risky weight Y t . Vanishes for cash position.

  22. Model Results Heuristics Wealth and Portfolio • Continuous time: cash position α � 1 + α � � � � � � � ˙ S t ˙ ˙ θ t S t sgn ( ˙ θ t θ t S t dC t = − S t 1 + λ θ ) d θ t = − X t + λ X t dt � � � � X t X t � � � � ˙ θ t S t • Trading volume as wealth turnover u t := X t . Amount traded in unit of time, as fraction of wealth. • Dynamics for wealth X t := θ t S t + C t and risky portfolio weight Y t := θ t S t X t dX t = Y t ( µ dt + σ dW t ) − λ | u t | 1 + α dt X t dY t = ( Y t ( 1 − Y t )( µ − Y t σ 2 ) + ( u t + λ Y t | u t | 1 + α )) dt + σ Y t ( 1 − Y t ) dW t • Illiquidity... • ...reduces portfolio return ( − λ u 1 + α ). t Turnover effect quadratic: quantities times price impact. • ...increases risky weight ( λ Y t u 1 + α ). Buy: pay more cash. Sell: get less. t Turnover effect linear in risky weight Y t . Vanishes for cash position.

  23. Model Results Heuristics Wealth and Portfolio • Continuous time: cash position α � 1 + α � � � � � � � ˙ S t ˙ ˙ θ t S t sgn ( ˙ θ t θ t S t dC t = − S t 1 + λ θ ) d θ t = − X t + λ X t dt � � � � X t X t � � � � ˙ θ t S t • Trading volume as wealth turnover u t := X t . Amount traded in unit of time, as fraction of wealth. • Dynamics for wealth X t := θ t S t + C t and risky portfolio weight Y t := θ t S t X t dX t = Y t ( µ dt + σ dW t ) − λ | u t | 1 + α dt X t dY t = ( Y t ( 1 − Y t )( µ − Y t σ 2 ) + ( u t + λ Y t | u t | 1 + α )) dt + σ Y t ( 1 − Y t ) dW t • Illiquidity... • ...reduces portfolio return ( − λ u 1 + α ). t Turnover effect quadratic: quantities times price impact. • ...increases risky weight ( λ Y t u 1 + α ). Buy: pay more cash. Sell: get less. t Turnover effect linear in risky weight Y t . Vanishes for cash position.

  24. Model Results Heuristics Wealth and Portfolio • Continuous time: cash position α � 1 + α � � � � � � � ˙ S t ˙ ˙ θ t S t sgn ( ˙ θ t θ t S t dC t = − S t 1 + λ θ ) d θ t = − X t + λ X t dt � � � � X t X t � � � � ˙ θ t S t • Trading volume as wealth turnover u t := X t . Amount traded in unit of time, as fraction of wealth. • Dynamics for wealth X t := θ t S t + C t and risky portfolio weight Y t := θ t S t X t dX t = Y t ( µ dt + σ dW t ) − λ | u t | 1 + α dt X t dY t = ( Y t ( 1 − Y t )( µ − Y t σ 2 ) + ( u t + λ Y t | u t | 1 + α )) dt + σ Y t ( 1 − Y t ) dW t • Illiquidity... • ...reduces portfolio return ( − λ u 1 + α ). t Turnover effect quadratic: quantities times price impact. • ...increases risky weight ( λ Y t u 1 + α ). Buy: pay more cash. Sell: get less. t Turnover effect linear in risky weight Y t . Vanishes for cash position.

  25. Model Results Heuristics Wealth and Portfolio • Continuous time: cash position α � 1 + α � � � � � � � ˙ S t ˙ ˙ θ t S t sgn ( ˙ θ t θ t S t dC t = − S t 1 + λ θ ) d θ t = − X t + λ X t dt � � � � X t X t � � � � ˙ θ t S t • Trading volume as wealth turnover u t := X t . Amount traded in unit of time, as fraction of wealth. • Dynamics for wealth X t := θ t S t + C t and risky portfolio weight Y t := θ t S t X t dX t = Y t ( µ dt + σ dW t ) − λ | u t | 1 + α dt X t dY t = ( Y t ( 1 − Y t )( µ − Y t σ 2 ) + ( u t + λ Y t | u t | 1 + α )) dt + σ Y t ( 1 − Y t ) dW t • Illiquidity... • ...reduces portfolio return ( − λ u 1 + α ). t Turnover effect quadratic: quantities times price impact. • ...increases risky weight ( λ Y t u 1 + α ). Buy: pay more cash. Sell: get less. t Turnover effect linear in risky weight Y t . Vanishes for cash position.

  26. Model Results Heuristics Wealth and Portfolio • Continuous time: cash position α � 1 + α � � � � � � � ˙ S t ˙ ˙ θ t S t sgn ( ˙ θ t θ t S t dC t = − S t 1 + λ θ ) d θ t = − X t + λ X t dt � � � � X t X t � � � � ˙ θ t S t • Trading volume as wealth turnover u t := X t . Amount traded in unit of time, as fraction of wealth. • Dynamics for wealth X t := θ t S t + C t and risky portfolio weight Y t := θ t S t X t dX t = Y t ( µ dt + σ dW t ) − λ | u t | 1 + α dt X t dY t = ( Y t ( 1 − Y t )( µ − Y t σ 2 ) + ( u t + λ Y t | u t | 1 + α )) dt + σ Y t ( 1 − Y t ) dW t • Illiquidity... • ...reduces portfolio return ( − λ u 1 + α ). t Turnover effect quadratic: quantities times price impact. • ...increases risky weight ( λ Y t u 1 + α ). Buy: pay more cash. Sell: get less. t Turnover effect linear in risky weight Y t . Vanishes for cash position.

  27. Model Results Heuristics Admissible Strategies Definition Admissible strategy: process ( u t ) t ≥ 0 , adapted to F t , such that system dX t = Y t ( µ dt + σ dW t ) − λ | u t | 1 + α dt X t dY t = ( Y t ( 1 − Y t )( µ − Y t σ 2 ) + ( u t + λ Y t | u t | 1 + α )) dt + σ Y t ( 1 − Y t ) dW t has unique solution satisfying X t ≥ 0 a.s. for all t ≥ 0. • Contrast to models without frictions or with transaction costs: control variable is not risky weight Y t , but its “rate of change” u t . • Portfolio weight Y t is now a state variable . • Illiquid vs. perfectly liquid market. Steering a ship vs. driving a race car. µ • Frictionless solution Y t = γσ 2 unfeasible. A still ship in stormy sea.

  28. Model Results Heuristics Admissible Strategies Definition Admissible strategy: process ( u t ) t ≥ 0 , adapted to F t , such that system dX t = Y t ( µ dt + σ dW t ) − λ | u t | 1 + α dt X t dY t = ( Y t ( 1 − Y t )( µ − Y t σ 2 ) + ( u t + λ Y t | u t | 1 + α )) dt + σ Y t ( 1 − Y t ) dW t has unique solution satisfying X t ≥ 0 a.s. for all t ≥ 0. • Contrast to models without frictions or with transaction costs: control variable is not risky weight Y t , but its “rate of change” u t . • Portfolio weight Y t is now a state variable . • Illiquid vs. perfectly liquid market. Steering a ship vs. driving a race car. µ • Frictionless solution Y t = γσ 2 unfeasible. A still ship in stormy sea.

  29. Model Results Heuristics Admissible Strategies Definition Admissible strategy: process ( u t ) t ≥ 0 , adapted to F t , such that system dX t = Y t ( µ dt + σ dW t ) − λ | u t | 1 + α dt X t dY t = ( Y t ( 1 − Y t )( µ − Y t σ 2 ) + ( u t + λ Y t | u t | 1 + α )) dt + σ Y t ( 1 − Y t ) dW t has unique solution satisfying X t ≥ 0 a.s. for all t ≥ 0. • Contrast to models without frictions or with transaction costs: control variable is not risky weight Y t , but its “rate of change” u t . • Portfolio weight Y t is now a state variable . • Illiquid vs. perfectly liquid market. Steering a ship vs. driving a race car. µ • Frictionless solution Y t = γσ 2 unfeasible. A still ship in stormy sea.

  30. Model Results Heuristics Admissible Strategies Definition Admissible strategy: process ( u t ) t ≥ 0 , adapted to F t , such that system dX t = Y t ( µ dt + σ dW t ) − λ | u t | 1 + α dt X t dY t = ( Y t ( 1 − Y t )( µ − Y t σ 2 ) + ( u t + λ Y t | u t | 1 + α )) dt + σ Y t ( 1 − Y t ) dW t has unique solution satisfying X t ≥ 0 a.s. for all t ≥ 0. • Contrast to models without frictions or with transaction costs: control variable is not risky weight Y t , but its “rate of change” u t . • Portfolio weight Y t is now a state variable . • Illiquid vs. perfectly liquid market. Steering a ship vs. driving a race car. µ • Frictionless solution Y t = γσ 2 unfeasible. A still ship in stormy sea.

  31. Model Results Heuristics Admissible Strategies Definition Admissible strategy: process ( u t ) t ≥ 0 , adapted to F t , such that system dX t = Y t ( µ dt + σ dW t ) − λ | u t | 1 + α dt X t dY t = ( Y t ( 1 − Y t )( µ − Y t σ 2 ) + ( u t + λ Y t | u t | 1 + α )) dt + σ Y t ( 1 − Y t ) dW t has unique solution satisfying X t ≥ 0 a.s. for all t ≥ 0. • Contrast to models without frictions or with transaction costs: control variable is not risky weight Y t , but its “rate of change” u t . • Portfolio weight Y t is now a state variable . • Illiquid vs. perfectly liquid market. Steering a ship vs. driving a race car. µ • Frictionless solution Y t = γσ 2 unfeasible. A still ship in stormy sea.

  32. Model Results Heuristics Objective • Investor with relative risk aversion γ . • Maximize equivalent safe rate, i.e., power utility over long horizon: 1 1 � � X 1 − γ 1 − γ max lim T log E T u T →∞ • Tradeoff between speed and impact. • Optimal policy and welfare. • Implied trading volume. • Dependence on parameters. • Asymptotics for small λ . • Comparison with linear impact and transaction costs.

  33. Model Results Heuristics Objective • Investor with relative risk aversion γ . • Maximize equivalent safe rate, i.e., power utility over long horizon: 1 1 � � X 1 − γ 1 − γ max lim T log E T u T →∞ • Tradeoff between speed and impact. • Optimal policy and welfare. • Implied trading volume. • Dependence on parameters. • Asymptotics for small λ . • Comparison with linear impact and transaction costs.

  34. Model Results Heuristics Objective • Investor with relative risk aversion γ . • Maximize equivalent safe rate, i.e., power utility over long horizon: 1 1 � � X 1 − γ 1 − γ max lim T log E T u T →∞ • Tradeoff between speed and impact. • Optimal policy and welfare. • Implied trading volume. • Dependence on parameters. • Asymptotics for small λ . • Comparison with linear impact and transaction costs.

  35. Model Results Heuristics Objective • Investor with relative risk aversion γ . • Maximize equivalent safe rate, i.e., power utility over long horizon: 1 1 � � X 1 − γ 1 − γ max lim T log E T u T →∞ • Tradeoff between speed and impact. • Optimal policy and welfare. • Implied trading volume. • Dependence on parameters. • Asymptotics for small λ . • Comparison with linear impact and transaction costs.

  36. Model Results Heuristics Objective • Investor with relative risk aversion γ . • Maximize equivalent safe rate, i.e., power utility over long horizon: 1 1 � � X 1 − γ 1 − γ max lim T log E T u T →∞ • Tradeoff between speed and impact. • Optimal policy and welfare. • Implied trading volume. • Dependence on parameters. • Asymptotics for small λ . • Comparison with linear impact and transaction costs.

  37. Model Results Heuristics Objective • Investor with relative risk aversion γ . • Maximize equivalent safe rate, i.e., power utility over long horizon: 1 1 � � X 1 − γ 1 − γ max lim T log E T u T →∞ • Tradeoff between speed and impact. • Optimal policy and welfare. • Implied trading volume. • Dependence on parameters. • Asymptotics for small λ . • Comparison with linear impact and transaction costs.

  38. Model Results Heuristics Objective • Investor with relative risk aversion γ . • Maximize equivalent safe rate, i.e., power utility over long horizon: 1 1 � � X 1 − γ 1 − γ max lim T log E T u T →∞ • Tradeoff between speed and impact. • Optimal policy and welfare. • Implied trading volume. • Dependence on parameters. • Asymptotics for small λ . • Comparison with linear impact and transaction costs.

  39. Model Results Heuristics Objective • Investor with relative risk aversion γ . • Maximize equivalent safe rate, i.e., power utility over long horizon: 1 1 � � X 1 − γ 1 − γ max lim T log E T u T →∞ • Tradeoff between speed and impact. • Optimal policy and welfare. • Implied trading volume. • Dependence on parameters. • Asymptotics for small λ . • Comparison with linear impact and transaction costs.

  40. Model Results Heuristics Verification Theorem µ If γσ 2 ∈ ( 0 , 1 ) , then the optimal wealth turnover and equivalent safe rate are: 1 /α � � q ( y ) ˆ EsR γ (ˆ u ( y ) = sgn ( q ( y )) u ) = β � � ( α + 1 ) λ ( 1 − yq ( y )) � � µ 2 where β ∈ ( 0 , 2 γσ 2 ) and q : [ 0 , 1 ] �→ R are the unique pair that solves the ODE β + µ y − γ σ 2 2 y 2 + y ( 1 − y )( µ − γσ 2 y ) q − ˆ α + 1 ( 1 − yq ) 1 /α λ − 1 /α + σ 2 α | q | α 2 y 2 ( 1 − y ) 2 ( q ′ + ( 1 − γ ) q 2 ) = 0 + ( α + 1 ) 1 + 1 /α α α + 1 , α + 1 � � ( 1 − q ( 1 )) 1 /α λ − 1 /α = ˆ β − µ + γ σ 2 1 1 α ˆ | q ( 1 ) | α + 1 ( α + 1 ) α + 1 α α q ( 0 ) = λ β α + 1 ( α + 1 ) 1 + 1 /α 2 • License to solve an ODE of Abel type. Function q and scalar β not explicit. • Asymptotic expansion for λ near zero?

  41. Model Results Heuristics Verification Theorem µ If γσ 2 ∈ ( 0 , 1 ) , then the optimal wealth turnover and equivalent safe rate are: 1 /α � � q ( y ) ˆ EsR γ (ˆ u ( y ) = sgn ( q ( y )) u ) = β � � ( α + 1 ) λ ( 1 − yq ( y )) � � µ 2 where β ∈ ( 0 , 2 γσ 2 ) and q : [ 0 , 1 ] �→ R are the unique pair that solves the ODE β + µ y − γ σ 2 2 y 2 + y ( 1 − y )( µ − γσ 2 y ) q − ˆ α + 1 ( 1 − yq ) 1 /α λ − 1 /α + σ 2 α | q | α 2 y 2 ( 1 − y ) 2 ( q ′ + ( 1 − γ ) q 2 ) = 0 + ( α + 1 ) 1 + 1 /α α α + 1 , α + 1 � � ( 1 − q ( 1 )) 1 /α λ − 1 /α = ˆ β − µ + γ σ 2 1 1 α ˆ | q ( 1 ) | α + 1 ( α + 1 ) α + 1 α α q ( 0 ) = λ β α + 1 ( α + 1 ) 1 + 1 /α 2 • License to solve an ODE of Abel type. Function q and scalar β not explicit. • Asymptotic expansion for λ near zero?

  42. Model Results Heuristics Verification Theorem µ If γσ 2 ∈ ( 0 , 1 ) , then the optimal wealth turnover and equivalent safe rate are: 1 /α � � q ( y ) ˆ EsR γ (ˆ u ( y ) = sgn ( q ( y )) u ) = β � � ( α + 1 ) λ ( 1 − yq ( y )) � � µ 2 where β ∈ ( 0 , 2 γσ 2 ) and q : [ 0 , 1 ] �→ R are the unique pair that solves the ODE β + µ y − γ σ 2 2 y 2 + y ( 1 − y )( µ − γσ 2 y ) q − ˆ α + 1 ( 1 − yq ) 1 /α λ − 1 /α + σ 2 α | q | α 2 y 2 ( 1 − y ) 2 ( q ′ + ( 1 − γ ) q 2 ) = 0 + ( α + 1 ) 1 + 1 /α α α + 1 , α + 1 � � ( 1 − q ( 1 )) 1 /α λ − 1 /α = ˆ β − µ + γ σ 2 1 1 α ˆ | q ( 1 ) | α + 1 ( α + 1 ) α + 1 α α q ( 0 ) = λ β α + 1 ( α + 1 ) 1 + 1 /α 2 • License to solve an ODE of Abel type. Function q and scalar β not explicit. • Asymptotic expansion for λ near zero?

  43. Model Results Heuristics Trading Rate ( µ = 8 % , σ = 16 % , λ = 0 . 1 % , γ = 5) Trading rate (vertical) against current risky weight (horizontal) for α = 1 / 3 (red) and α = 2 / 3 (blue). Dashed lines are no-trade boundaries ( α = 0).

  44. Model Results Heuristics Asymptotics Theorem c α and s α unique pair that solves | s α ( z ) | s ′ ( z ) = z 2 − c − α ( α + 1 ) − ( 1 + 1 /α ) | s ( z ) | 1 + 1 /α α α + 1 = ( α + 1 ) α − lim α + 1 2 α z →±∞ | z | � α + 1 �� � 3 � 1 / 2 α + 3 α σ 2 � − γ ¯ Y 4 ( 1 − ¯ Y ) 4 2 l α α + 1 Set l α := , A α = , B α = l . α 2 γσ 2 Asymptotic optimal strategy and welfare: 1 /α � � α + 3 ( y − ¯ 1 s α ( λ − Y ) / A α ) � � y − ¯ ˆ � � u ( y ) = − sgn Y � � � B α ( α + 1 ) � � � µ 2 2 2 α + 3 + o ( λ α + 3 ) EsR γ (ˆ u ) = 2 γσ 2 − c α l α λ • Implications?

  45. Model Results Heuristics Asymptotics Theorem c α and s α unique pair that solves | s α ( z ) | s ′ ( z ) = z 2 − c − α ( α + 1 ) − ( 1 + 1 /α ) | s ( z ) | 1 + 1 /α α α + 1 = ( α + 1 ) α − lim α + 1 2 α z →±∞ | z | � α + 1 �� � 3 � 1 / 2 α + 3 α σ 2 � − γ ¯ Y 4 ( 1 − ¯ Y ) 4 2 l α α + 1 Set l α := , A α = , B α = l . α 2 γσ 2 Asymptotic optimal strategy and welfare: 1 /α � � α + 3 ( y − ¯ 1 s α ( λ − Y ) / A α ) � � y − ¯ ˆ � � u ( y ) = − sgn Y � � � B α ( α + 1 ) � � � µ 2 2 2 α + 3 + o ( λ α + 3 ) EsR γ (ˆ u ) = 2 γσ 2 − c α l α λ • Implications?

  46. Model Results Heuristics Trading Policy • Trade towards ¯ Y . Buy for y < ¯ Y , sell for y > ¯ Y . • Trade faster if market deeper. Higher volume in more liquid markets. • Trade slower than with linear impact near target. Faster away from target. With linear impact trading rate proportional to displacement | y − ¯ Y | . • As α ↓ 0, trading rate: vanishes inside no-trade region explodes to ±∞ outside region.

  47. Model Results Heuristics Trading Policy • Trade towards ¯ Y . Buy for y < ¯ Y , sell for y > ¯ Y . • Trade faster if market deeper. Higher volume in more liquid markets. • Trade slower than with linear impact near target. Faster away from target. With linear impact trading rate proportional to displacement | y − ¯ Y | . • As α ↓ 0, trading rate: vanishes inside no-trade region explodes to ±∞ outside region.

  48. Model Results Heuristics Trading Policy • Trade towards ¯ Y . Buy for y < ¯ Y , sell for y > ¯ Y . • Trade faster if market deeper. Higher volume in more liquid markets. • Trade slower than with linear impact near target. Faster away from target. With linear impact trading rate proportional to displacement | y − ¯ Y | . • As α ↓ 0, trading rate: vanishes inside no-trade region explodes to ±∞ outside region.

  49. Model Results Heuristics Trading Policy • Trade towards ¯ Y . Buy for y < ¯ Y , sell for y > ¯ Y . • Trade faster if market deeper. Higher volume in more liquid markets. • Trade slower than with linear impact near target. Faster away from target. With linear impact trading rate proportional to displacement | y − ¯ Y | . • As α ↓ 0, trading rate: vanishes inside no-trade region explodes to ±∞ outside region.

  50. Model Results Heuristics Long-term weight ( µ = 8 % , σ = 16 % , γ = 5) Density (vertical) of the long-term density of rescaled risky weight Z 0 (horizontal) for α = 1 / 3 (red) and α = 2 / 3 (blue). Dashed line is uniform density ( α → 0).

  51. Model Results Heuristics Universal Constant c α c α (vertical) against α (horizontal).

  52. Model Results Heuristics Linear Impact ( α = 1) • Solution to s ′ ( z ) = z 2 − c − α ( α + 1 ) − ( 1 + 1 /α ) | s ( z ) | 1 + 1 /α is c 1 = 2 and s 1 ( z ) = − 2 z . • Optimal policy and welfare: � γ 2 λ ( ¯ ˆ u ( y ) = σ Y − y ) + O ( 1 ) µ 2 � γ Y ) 2 λ 1 / 2 + O ( λ ) Y 2 ( 1 − ¯ ¯ EsR γ (ˆ 2 γσ 2 − σ 3 u ) = 2

  53. Model Results Heuristics Linear Impact ( α = 1) • Solution to s ′ ( z ) = z 2 − c − α ( α + 1 ) − ( 1 + 1 /α ) | s ( z ) | 1 + 1 /α is c 1 = 2 and s 1 ( z ) = − 2 z . • Optimal policy and welfare: � γ 2 λ ( ¯ ˆ u ( y ) = σ Y − y ) + O ( 1 ) µ 2 � γ Y ) 2 λ 1 / 2 + O ( λ ) Y 2 ( 1 − ¯ ¯ EsR γ (ˆ 2 γσ 2 − σ 3 u ) = 2

  54. Model Results Heuristics Transaction Costs ( α ↓ 0) • Solution to s ′ ( z ) = z 2 − c − α ( α + 1 ) − ( 1 + 1 /α ) | s ( z ) | 1 + 1 /α converges to c 0 = ( 3 / 2 ) 2 / 3 and z ∈ ( −∞ , −√ c 0 ] ,  1 ,  z ∈ ( −√ c 0 , √ c 0 ) ,  z 3 / 3 − c 0 z , s 0 ( z ) := lim α → 0 s α ( z ) = z ∈ [ √ c 0 , + ∞ ) .  − 1 ,  • Optimal policy and welfare: � 3 � 1 / 3 µ Y 2 ( 1 − ¯ ¯ Y ) 2 ε 1 / 3 Y ± = γσ 2 ± 4 γ � 3 � 2 / 3 2 γσ 2 − γσ 2 µ 2 Y 2 ( 1 − ¯ ¯ Y ) 2 ε 2 / 3 EsR γ (ˆ u ) = 2 4 γ • Compare to transaction cost model (Gerhold et al., 2014).

  55. Model Results Heuristics Transaction Costs ( α ↓ 0) • Solution to s ′ ( z ) = z 2 − c − α ( α + 1 ) − ( 1 + 1 /α ) | s ( z ) | 1 + 1 /α converges to c 0 = ( 3 / 2 ) 2 / 3 and z ∈ ( −∞ , −√ c 0 ] ,  1 ,  z ∈ ( −√ c 0 , √ c 0 ) ,  z 3 / 3 − c 0 z , s 0 ( z ) := lim α → 0 s α ( z ) = z ∈ [ √ c 0 , + ∞ ) .  − 1 ,  • Optimal policy and welfare: � 3 � 1 / 3 µ Y 2 ( 1 − ¯ ¯ Y ) 2 ε 1 / 3 Y ± = γσ 2 ± 4 γ � 3 � 2 / 3 2 γσ 2 − γσ 2 µ 2 Y 2 ( 1 − ¯ ¯ Y ) 2 ε 2 / 3 EsR γ (ˆ u ) = 2 4 γ • Compare to transaction cost model (Gerhold et al., 2014).

  56. Model Results Heuristics Transaction Costs ( α ↓ 0) • Solution to s ′ ( z ) = z 2 − c − α ( α + 1 ) − ( 1 + 1 /α ) | s ( z ) | 1 + 1 /α converges to c 0 = ( 3 / 2 ) 2 / 3 and z ∈ ( −∞ , −√ c 0 ] ,  1 ,  z ∈ ( −√ c 0 , √ c 0 ) ,  z 3 / 3 − c 0 z , s 0 ( z ) := lim α → 0 s α ( z ) = z ∈ [ √ c 0 , + ∞ ) .  − 1 ,  • Optimal policy and welfare: � 3 � 1 / 3 µ Y 2 ( 1 − ¯ ¯ Y ) 2 ε 1 / 3 Y ± = γσ 2 ± 4 γ � 3 � 2 / 3 2 γσ 2 − γσ 2 µ 2 Y 2 ( 1 − ¯ ¯ Y ) 2 ε 2 / 3 EsR γ (ˆ u ) = 2 4 γ • Compare to transaction cost model (Gerhold et al., 2014).

  57. Model Results Heuristics Trading Volume and Welfare • Expected Trading Volume � T 1 �� � 1 � 3 α + 3 σ 2 1 1 γ ¯ Y 4 ( 1 − ¯ λ − α + 3 + o ( λ − | ˆ Y ) 4 | ET | := lim u λ ( Y t ) | dt = K α α + 3 2 T T →∞ 0 • Define welfare loss as decrease in equivalent safe rate due to friction: µ 2 2 γσ 2 − EsR γ (ˆ LoS = u ) • Zero loss if no trading necessary, i.e. ¯ Y ∈ { 0 , 1 } . • Universal relation: LoS = N α λ | ET | 1 + α where constant N α depends only on α . • Linear effect with transaction costs (price, not quantity). Superlinear effect with liquidity (price times quantity).

  58. Model Results Heuristics Trading Volume and Welfare • Expected Trading Volume � T 1 �� � 1 � 3 α + 3 σ 2 1 1 γ ¯ Y 4 ( 1 − ¯ λ − α + 3 + o ( λ − | ˆ Y ) 4 | ET | := lim u λ ( Y t ) | dt = K α α + 3 2 T T →∞ 0 • Define welfare loss as decrease in equivalent safe rate due to friction: µ 2 2 γσ 2 − EsR γ (ˆ LoS = u ) • Zero loss if no trading necessary, i.e. ¯ Y ∈ { 0 , 1 } . • Universal relation: LoS = N α λ | ET | 1 + α where constant N α depends only on α . • Linear effect with transaction costs (price, not quantity). Superlinear effect with liquidity (price times quantity).

  59. Model Results Heuristics Trading Volume and Welfare • Expected Trading Volume � T 1 �� � 1 � 3 α + 3 σ 2 1 1 γ ¯ Y 4 ( 1 − ¯ λ − α + 3 + o ( λ − | ˆ Y ) 4 | ET | := lim u λ ( Y t ) | dt = K α α + 3 2 T T →∞ 0 • Define welfare loss as decrease in equivalent safe rate due to friction: µ 2 2 γσ 2 − EsR γ (ˆ LoS = u ) • Zero loss if no trading necessary, i.e. ¯ Y ∈ { 0 , 1 } . • Universal relation: LoS = N α λ | ET | 1 + α where constant N α depends only on α . • Linear effect with transaction costs (price, not quantity). Superlinear effect with liquidity (price times quantity).

  60. Model Results Heuristics Trading Volume and Welfare • Expected Trading Volume � T 1 �� � 1 � 3 α + 3 σ 2 1 1 γ ¯ Y 4 ( 1 − ¯ λ − α + 3 + o ( λ − | ˆ Y ) 4 | ET | := lim u λ ( Y t ) | dt = K α α + 3 2 T T →∞ 0 • Define welfare loss as decrease in equivalent safe rate due to friction: µ 2 2 γσ 2 − EsR γ (ˆ LoS = u ) • Zero loss if no trading necessary, i.e. ¯ Y ∈ { 0 , 1 } . • Universal relation: LoS = N α λ | ET | 1 + α where constant N α depends only on α . • Linear effect with transaction costs (price, not quantity). Superlinear effect with liquidity (price times quantity).

  61. Model Results Heuristics Trading Volume and Welfare • Expected Trading Volume � T 1 �� � 1 � 3 α + 3 σ 2 1 1 γ ¯ Y 4 ( 1 − ¯ λ − α + 3 + o ( λ − | ˆ Y ) 4 | ET | := lim u λ ( Y t ) | dt = K α α + 3 2 T T →∞ 0 • Define welfare loss as decrease in equivalent safe rate due to friction: µ 2 2 γσ 2 − EsR γ (ˆ LoS = u ) • Zero loss if no trading necessary, i.e. ¯ Y ∈ { 0 , 1 } . • Universal relation: LoS = N α λ | ET | 1 + α where constant N α depends only on α . • Linear effect with transaction costs (price, not quantity). Superlinear effect with liquidity (price times quantity).

  62. Model Results Heuristics Neither a Borrower nor a Shorter Be Theorem µ If γσ 2 ≤ 0 , then Y t = 0 and ˆ u = 0 for all t optimal. Equivalent safe rate zero. µ u = 0 for all t optimal. Equivalent safe rate µ − γ γσ 2 ≥ 1 , then Y t = 1 and ˆ 2 σ 2 . If • If Merton investor shorts, keep all wealth in safe asset, but do not short. • If Merton investor levers, keep all wealth in risky asset, but do not lever. • Portfolio choice for a risk-neutral investor! • Corner solutions. But without constraints? • Intuition: the constraint is that wealth must stay positive. • Positive wealth does not preclude borrowing with block trading, as in frictionless models and with transaction costs. • Block trading unfeasible with price impact proportional to turnover. Even in the limit. • Phenomenon disappears with exponential utility.

  63. Model Results Heuristics Neither a Borrower nor a Shorter Be Theorem µ If γσ 2 ≤ 0 , then Y t = 0 and ˆ u = 0 for all t optimal. Equivalent safe rate zero. µ u = 0 for all t optimal. Equivalent safe rate µ − γ γσ 2 ≥ 1 , then Y t = 1 and ˆ 2 σ 2 . If • If Merton investor shorts, keep all wealth in safe asset, but do not short. • If Merton investor levers, keep all wealth in risky asset, but do not lever. • Portfolio choice for a risk-neutral investor! • Corner solutions. But without constraints? • Intuition: the constraint is that wealth must stay positive. • Positive wealth does not preclude borrowing with block trading, as in frictionless models and with transaction costs. • Block trading unfeasible with price impact proportional to turnover. Even in the limit. • Phenomenon disappears with exponential utility.

  64. Model Results Heuristics Neither a Borrower nor a Shorter Be Theorem µ If γσ 2 ≤ 0 , then Y t = 0 and ˆ u = 0 for all t optimal. Equivalent safe rate zero. µ u = 0 for all t optimal. Equivalent safe rate µ − γ γσ 2 ≥ 1 , then Y t = 1 and ˆ 2 σ 2 . If • If Merton investor shorts, keep all wealth in safe asset, but do not short. • If Merton investor levers, keep all wealth in risky asset, but do not lever. • Portfolio choice for a risk-neutral investor! • Corner solutions. But without constraints? • Intuition: the constraint is that wealth must stay positive. • Positive wealth does not preclude borrowing with block trading, as in frictionless models and with transaction costs. • Block trading unfeasible with price impact proportional to turnover. Even in the limit. • Phenomenon disappears with exponential utility.

  65. Model Results Heuristics Neither a Borrower nor a Shorter Be Theorem µ If γσ 2 ≤ 0 , then Y t = 0 and ˆ u = 0 for all t optimal. Equivalent safe rate zero. µ u = 0 for all t optimal. Equivalent safe rate µ − γ γσ 2 ≥ 1 , then Y t = 1 and ˆ 2 σ 2 . If • If Merton investor shorts, keep all wealth in safe asset, but do not short. • If Merton investor levers, keep all wealth in risky asset, but do not lever. • Portfolio choice for a risk-neutral investor! • Corner solutions. But without constraints? • Intuition: the constraint is that wealth must stay positive. • Positive wealth does not preclude borrowing with block trading, as in frictionless models and with transaction costs. • Block trading unfeasible with price impact proportional to turnover. Even in the limit. • Phenomenon disappears with exponential utility.

  66. Model Results Heuristics Neither a Borrower nor a Shorter Be Theorem µ If γσ 2 ≤ 0 , then Y t = 0 and ˆ u = 0 for all t optimal. Equivalent safe rate zero. µ u = 0 for all t optimal. Equivalent safe rate µ − γ γσ 2 ≥ 1 , then Y t = 1 and ˆ 2 σ 2 . If • If Merton investor shorts, keep all wealth in safe asset, but do not short. • If Merton investor levers, keep all wealth in risky asset, but do not lever. • Portfolio choice for a risk-neutral investor! • Corner solutions. But without constraints? • Intuition: the constraint is that wealth must stay positive. • Positive wealth does not preclude borrowing with block trading, as in frictionless models and with transaction costs. • Block trading unfeasible with price impact proportional to turnover. Even in the limit. • Phenomenon disappears with exponential utility.

  67. Model Results Heuristics Neither a Borrower nor a Shorter Be Theorem µ If γσ 2 ≤ 0 , then Y t = 0 and ˆ u = 0 for all t optimal. Equivalent safe rate zero. µ u = 0 for all t optimal. Equivalent safe rate µ − γ γσ 2 ≥ 1 , then Y t = 1 and ˆ 2 σ 2 . If • If Merton investor shorts, keep all wealth in safe asset, but do not short. • If Merton investor levers, keep all wealth in risky asset, but do not lever. • Portfolio choice for a risk-neutral investor! • Corner solutions. But without constraints? • Intuition: the constraint is that wealth must stay positive. • Positive wealth does not preclude borrowing with block trading, as in frictionless models and with transaction costs. • Block trading unfeasible with price impact proportional to turnover. Even in the limit. • Phenomenon disappears with exponential utility.

  68. Model Results Heuristics Neither a Borrower nor a Shorter Be Theorem µ If γσ 2 ≤ 0 , then Y t = 0 and ˆ u = 0 for all t optimal. Equivalent safe rate zero. µ u = 0 for all t optimal. Equivalent safe rate µ − γ γσ 2 ≥ 1 , then Y t = 1 and ˆ 2 σ 2 . If • If Merton investor shorts, keep all wealth in safe asset, but do not short. • If Merton investor levers, keep all wealth in risky asset, but do not lever. • Portfolio choice for a risk-neutral investor! • Corner solutions. But without constraints? • Intuition: the constraint is that wealth must stay positive. • Positive wealth does not preclude borrowing with block trading, as in frictionless models and with transaction costs. • Block trading unfeasible with price impact proportional to turnover. Even in the limit. • Phenomenon disappears with exponential utility.

  69. Model Results Heuristics Neither a Borrower nor a Shorter Be Theorem µ If γσ 2 ≤ 0 , then Y t = 0 and ˆ u = 0 for all t optimal. Equivalent safe rate zero. µ u = 0 for all t optimal. Equivalent safe rate µ − γ γσ 2 ≥ 1 , then Y t = 1 and ˆ 2 σ 2 . If • If Merton investor shorts, keep all wealth in safe asset, but do not short. • If Merton investor levers, keep all wealth in risky asset, but do not lever. • Portfolio choice for a risk-neutral investor! • Corner solutions. But without constraints? • Intuition: the constraint is that wealth must stay positive. • Positive wealth does not preclude borrowing with block trading, as in frictionless models and with transaction costs. • Block trading unfeasible with price impact proportional to turnover. Even in the limit. • Phenomenon disappears with exponential utility.

  70. Model Results Heuristics Neither a Borrower nor a Shorter Be Theorem µ If γσ 2 ≤ 0 , then Y t = 0 and ˆ u = 0 for all t optimal. Equivalent safe rate zero. µ u = 0 for all t optimal. Equivalent safe rate µ − γ γσ 2 ≥ 1 , then Y t = 1 and ˆ 2 σ 2 . If • If Merton investor shorts, keep all wealth in safe asset, but do not short. • If Merton investor levers, keep all wealth in risky asset, but do not lever. • Portfolio choice for a risk-neutral investor! • Corner solutions. But without constraints? • Intuition: the constraint is that wealth must stay positive. • Positive wealth does not preclude borrowing with block trading, as in frictionless models and with transaction costs. • Block trading unfeasible with price impact proportional to turnover. Even in the limit. • Phenomenon disappears with exponential utility.

  71. Model Results Heuristics Control Argument • Value function v depends on (1) current wealth X t , (2) current risky weight Y t , and (3) calendar time t . dv ( t , X t , Y t ) = v t dt + v x dX t + v y dY t + v xx 2 d � X � t + v yy 2 d � Y � t + v xy d � X , Y � t = v t dt + v x ( µ X t Y t − λ X t | u t | α + 1 ) dt + v x X t Y t σ dW t + v y ( Y t ( 1 − Y t )( µ − Y t σ 2 ) + u t + λ Y t | u t | α + 1 ) dt + v y Y t ( 1 − Y t ) σ dW t � σ 2 t + σ 2 � t ( 1 − Y t ) 2 + σ 2 v xy X t Y 2 2 v xx X 2 t Y 2 2 v yy Y 2 + t ( 1 − Y t ) dt , • Maximize drift over u , and set result equal to zero: v t + y ( 1 − y )( µ − σ 2 y ) v y + µ xyv x + σ 2 y 2 � x 2 v xx + ( 1 − y ) 2 v yy + 2 x ( 1 − y ) v xy � 2 − λ x | u | α + 1 v x + v y u + λ y | u | α + 1 �� � � + max = 0 . u

  72. Model Results Heuristics Control Argument • Value function v depends on (1) current wealth X t , (2) current risky weight Y t , and (3) calendar time t . dv ( t , X t , Y t ) = v t dt + v x dX t + v y dY t + v xx 2 d � X � t + v yy 2 d � Y � t + v xy d � X , Y � t = v t dt + v x ( µ X t Y t − λ X t | u t | α + 1 ) dt + v x X t Y t σ dW t + v y ( Y t ( 1 − Y t )( µ − Y t σ 2 ) + u t + λ Y t | u t | α + 1 ) dt + v y Y t ( 1 − Y t ) σ dW t � σ 2 t + σ 2 � t ( 1 − Y t ) 2 + σ 2 v xy X t Y 2 2 v xx X 2 t Y 2 2 v yy Y 2 + t ( 1 − Y t ) dt , • Maximize drift over u , and set result equal to zero: v t + y ( 1 − y )( µ − σ 2 y ) v y + µ xyv x + σ 2 y 2 � x 2 v xx + ( 1 − y ) 2 v yy + 2 x ( 1 − y ) v xy � 2 − λ x | u | α + 1 v x + v y u + λ y | u | α + 1 �� � � + max = 0 . u

  73. Model Results Heuristics Homogeneity and Long-Run • Homogeneity in wealth v ( t , x , y ) = x 1 − γ v ( t , 1 , y ) . • Guess long-term growth at equivalent safe rate β , to be found. � y q ( z ) dz ) reduces HJB equation • Substitution v ( t , x , y ) = x 1 − γ 1 − γ e ( 1 − γ )( β ( T − t )+ 2 y 2 + qy ( 1 − y )( µ − γσ 2 y ) + σ 2 2 y 2 ( 1 − y ) 2 ( q ′ + ( 1 − γ ) q 2 ) − β + µ y − γ σ 2 − λ | u | α + 1 + ( u + λ y | u | α + 1 ) q � � + max = 0 , u 1 /α � � q ( y ) • Maximum for | u ( y ) | = . � � ( α + 1 ) λ ( 1 − yq ( y )) � � • Plugging yields − β + µ y − γ σ 2 2 y 2 + y ( 1 − y )( µ − γσ 2 y ) q α + 1 ( 1 − yq ) 1 /α λ − 1 /α + σ 2 α | q | α 2 y 2 ( 1 − y ) 2 ( q ′ + ( 1 − γ ) q 2 ) = 0 . + ( α + 1 ) 1 + 1 /α µ 2 µ • β = 2 γσ 2 , q = 0, y = γσ 2 corresponds to Merton solution. • Classical model as a singular limit.

  74. Model Results Heuristics Homogeneity and Long-Run • Homogeneity in wealth v ( t , x , y ) = x 1 − γ v ( t , 1 , y ) . • Guess long-term growth at equivalent safe rate β , to be found. � y q ( z ) dz ) reduces HJB equation • Substitution v ( t , x , y ) = x 1 − γ 1 − γ e ( 1 − γ )( β ( T − t )+ 2 y 2 + qy ( 1 − y )( µ − γσ 2 y ) + σ 2 2 y 2 ( 1 − y ) 2 ( q ′ + ( 1 − γ ) q 2 ) − β + µ y − γ σ 2 − λ | u | α + 1 + ( u + λ y | u | α + 1 ) q � � + max = 0 , u 1 /α � � q ( y ) • Maximum for | u ( y ) | = . � � ( α + 1 ) λ ( 1 − yq ( y )) � � • Plugging yields − β + µ y − γ σ 2 2 y 2 + y ( 1 − y )( µ − γσ 2 y ) q α + 1 ( 1 − yq ) 1 /α λ − 1 /α + σ 2 α | q | α 2 y 2 ( 1 − y ) 2 ( q ′ + ( 1 − γ ) q 2 ) = 0 . + ( α + 1 ) 1 + 1 /α µ 2 µ • β = 2 γσ 2 , q = 0, y = γσ 2 corresponds to Merton solution. • Classical model as a singular limit.

  75. Model Results Heuristics Homogeneity and Long-Run • Homogeneity in wealth v ( t , x , y ) = x 1 − γ v ( t , 1 , y ) . • Guess long-term growth at equivalent safe rate β , to be found. � y q ( z ) dz ) reduces HJB equation • Substitution v ( t , x , y ) = x 1 − γ 1 − γ e ( 1 − γ )( β ( T − t )+ 2 y 2 + qy ( 1 − y )( µ − γσ 2 y ) + σ 2 2 y 2 ( 1 − y ) 2 ( q ′ + ( 1 − γ ) q 2 ) − β + µ y − γ σ 2 − λ | u | α + 1 + ( u + λ y | u | α + 1 ) q � � + max = 0 , u 1 /α � � q ( y ) • Maximum for | u ( y ) | = . � � ( α + 1 ) λ ( 1 − yq ( y )) � � • Plugging yields − β + µ y − γ σ 2 2 y 2 + y ( 1 − y )( µ − γσ 2 y ) q α + 1 ( 1 − yq ) 1 /α λ − 1 /α + σ 2 α | q | α 2 y 2 ( 1 − y ) 2 ( q ′ + ( 1 − γ ) q 2 ) = 0 . + ( α + 1 ) 1 + 1 /α µ 2 µ • β = 2 γσ 2 , q = 0, y = γσ 2 corresponds to Merton solution. • Classical model as a singular limit.

  76. Model Results Heuristics Homogeneity and Long-Run • Homogeneity in wealth v ( t , x , y ) = x 1 − γ v ( t , 1 , y ) . • Guess long-term growth at equivalent safe rate β , to be found. � y q ( z ) dz ) reduces HJB equation • Substitution v ( t , x , y ) = x 1 − γ 1 − γ e ( 1 − γ )( β ( T − t )+ 2 y 2 + qy ( 1 − y )( µ − γσ 2 y ) + σ 2 2 y 2 ( 1 − y ) 2 ( q ′ + ( 1 − γ ) q 2 ) − β + µ y − γ σ 2 − λ | u | α + 1 + ( u + λ y | u | α + 1 ) q � � + max = 0 , u 1 /α � � q ( y ) • Maximum for | u ( y ) | = . � � ( α + 1 ) λ ( 1 − yq ( y )) � � • Plugging yields − β + µ y − γ σ 2 2 y 2 + y ( 1 − y )( µ − γσ 2 y ) q α + 1 ( 1 − yq ) 1 /α λ − 1 /α + σ 2 α | q | α 2 y 2 ( 1 − y ) 2 ( q ′ + ( 1 − γ ) q 2 ) = 0 . + ( α + 1 ) 1 + 1 /α µ 2 µ • β = 2 γσ 2 , q = 0, y = γσ 2 corresponds to Merton solution. • Classical model as a singular limit.

  77. Model Results Heuristics Homogeneity and Long-Run • Homogeneity in wealth v ( t , x , y ) = x 1 − γ v ( t , 1 , y ) . • Guess long-term growth at equivalent safe rate β , to be found. � y q ( z ) dz ) reduces HJB equation • Substitution v ( t , x , y ) = x 1 − γ 1 − γ e ( 1 − γ )( β ( T − t )+ 2 y 2 + qy ( 1 − y )( µ − γσ 2 y ) + σ 2 2 y 2 ( 1 − y ) 2 ( q ′ + ( 1 − γ ) q 2 ) − β + µ y − γ σ 2 − λ | u | α + 1 + ( u + λ y | u | α + 1 ) q � � + max = 0 , u 1 /α � � q ( y ) • Maximum for | u ( y ) | = . � � ( α + 1 ) λ ( 1 − yq ( y )) � � • Plugging yields − β + µ y − γ σ 2 2 y 2 + y ( 1 − y )( µ − γσ 2 y ) q α + 1 ( 1 − yq ) 1 /α λ − 1 /α + σ 2 α | q | α 2 y 2 ( 1 − y ) 2 ( q ′ + ( 1 − γ ) q 2 ) = 0 . + ( α + 1 ) 1 + 1 /α µ 2 µ • β = 2 γσ 2 , q = 0, y = γσ 2 corresponds to Merton solution. • Classical model as a singular limit.

  78. Model Results Heuristics Homogeneity and Long-Run • Homogeneity in wealth v ( t , x , y ) = x 1 − γ v ( t , 1 , y ) . • Guess long-term growth at equivalent safe rate β , to be found. � y q ( z ) dz ) reduces HJB equation • Substitution v ( t , x , y ) = x 1 − γ 1 − γ e ( 1 − γ )( β ( T − t )+ 2 y 2 + qy ( 1 − y )( µ − γσ 2 y ) + σ 2 2 y 2 ( 1 − y ) 2 ( q ′ + ( 1 − γ ) q 2 ) − β + µ y − γ σ 2 − λ | u | α + 1 + ( u + λ y | u | α + 1 ) q � � + max = 0 , u 1 /α � � q ( y ) • Maximum for | u ( y ) | = . � � ( α + 1 ) λ ( 1 − yq ( y )) � � • Plugging yields − β + µ y − γ σ 2 2 y 2 + y ( 1 − y )( µ − γσ 2 y ) q α + 1 ( 1 − yq ) 1 /α λ − 1 /α + σ 2 α | q | α 2 y 2 ( 1 − y ) 2 ( q ′ + ( 1 − γ ) q 2 ) = 0 . + ( α + 1 ) 1 + 1 /α µ 2 µ • β = 2 γσ 2 , q = 0, y = γσ 2 corresponds to Merton solution. • Classical model as a singular limit.

  79. Model Results Heuristics Homogeneity and Long-Run • Homogeneity in wealth v ( t , x , y ) = x 1 − γ v ( t , 1 , y ) . • Guess long-term growth at equivalent safe rate β , to be found. � y q ( z ) dz ) reduces HJB equation • Substitution v ( t , x , y ) = x 1 − γ 1 − γ e ( 1 − γ )( β ( T − t )+ 2 y 2 + qy ( 1 − y )( µ − γσ 2 y ) + σ 2 2 y 2 ( 1 − y ) 2 ( q ′ + ( 1 − γ ) q 2 ) − β + µ y − γ σ 2 − λ | u | α + 1 + ( u + λ y | u | α + 1 ) q � � + max = 0 , u 1 /α � � q ( y ) • Maximum for | u ( y ) | = . � � ( α + 1 ) λ ( 1 − yq ( y )) � � • Plugging yields − β + µ y − γ σ 2 2 y 2 + y ( 1 − y )( µ − γσ 2 y ) q α + 1 ( 1 − yq ) 1 /α λ − 1 /α + σ 2 α | q | α 2 y 2 ( 1 − y ) 2 ( q ′ + ( 1 − γ ) q 2 ) = 0 . + ( α + 1 ) 1 + 1 /α µ 2 µ • β = 2 γσ 2 , q = 0, y = γσ 2 corresponds to Merton solution. • Classical model as a singular limit.

  80. Model Results Heuristics Asymptotics away from Target • Guess that q ( y ) → 0 as λ ↓ 0. Limit equation: γσ 2 α Y − y ) 2 = lim α + 1 2 ( ¯ α + 1 ( α + 1 ) − 1 /α | q | α λ − 1 /α . λ → 0 µ 2 • Expand equivalent safe rate as β = 2 γσ 2 − c ( λ ) • Function c represents welfare impact of illiquidity. • Expand function as q ( y ) = q ( 1 ) ( y ) λ 1 / 2 + o ( λ 1 / 2 ) . • Plug expansion in HJB equation q 2 − β + µ y − γ σ 2 4 λ ( 1 − yq ) + σ 2 2 y 2 + y ( 1 − y )( µ − γσ 2 y ) q + 2 y 2 ( 1 − y ) 2 ( q ′ +( 1 − γ ) q 2 ) = 0 • which suggests asymptotic approximation α γσ 2 � α + 1 � α + 1 2 α 1 1 | ¯ α + 1 sgn ( ¯ q ( 1 ) ( y ) = λ α + 1 ( α + 1 ) Y − y | Y − y ) . α + 1 α 2 • Derivative explodes at target ¯ Y . Need different expansion.

  81. Model Results Heuristics Asymptotics away from Target • Guess that q ( y ) → 0 as λ ↓ 0. Limit equation: γσ 2 α Y − y ) 2 = lim α + 1 2 ( ¯ α + 1 ( α + 1 ) − 1 /α | q | α λ − 1 /α . λ → 0 µ 2 • Expand equivalent safe rate as β = 2 γσ 2 − c ( λ ) • Function c represents welfare impact of illiquidity. • Expand function as q ( y ) = q ( 1 ) ( y ) λ 1 / 2 + o ( λ 1 / 2 ) . • Plug expansion in HJB equation q 2 − β + µ y − γ σ 2 4 λ ( 1 − yq ) + σ 2 2 y 2 + y ( 1 − y )( µ − γσ 2 y ) q + 2 y 2 ( 1 − y ) 2 ( q ′ +( 1 − γ ) q 2 ) = 0 • which suggests asymptotic approximation α γσ 2 � α + 1 � α + 1 2 α 1 1 | ¯ α + 1 sgn ( ¯ q ( 1 ) ( y ) = λ α + 1 ( α + 1 ) Y − y | Y − y ) . α + 1 α 2 • Derivative explodes at target ¯ Y . Need different expansion.

  82. Model Results Heuristics Asymptotics away from Target • Guess that q ( y ) → 0 as λ ↓ 0. Limit equation: γσ 2 α Y − y ) 2 = lim α + 1 2 ( ¯ α + 1 ( α + 1 ) − 1 /α | q | α λ − 1 /α . λ → 0 µ 2 • Expand equivalent safe rate as β = 2 γσ 2 − c ( λ ) • Function c represents welfare impact of illiquidity. • Expand function as q ( y ) = q ( 1 ) ( y ) λ 1 / 2 + o ( λ 1 / 2 ) . • Plug expansion in HJB equation q 2 − β + µ y − γ σ 2 4 λ ( 1 − yq ) + σ 2 2 y 2 + y ( 1 − y )( µ − γσ 2 y ) q + 2 y 2 ( 1 − y ) 2 ( q ′ +( 1 − γ ) q 2 ) = 0 • which suggests asymptotic approximation α γσ 2 � α + 1 � α + 1 2 α 1 1 | ¯ α + 1 sgn ( ¯ q ( 1 ) ( y ) = λ α + 1 ( α + 1 ) Y − y | Y − y ) . α + 1 α 2 • Derivative explodes at target ¯ Y . Need different expansion.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend